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Abstract: A method is presented for the efficient evaluation of long-range electrostatic forces

in combined quantum mechanical and molecular mechanical (QM/MM) calculations of periodic

systems. The QM/MM-Ewald method is a linear-scaling electrostatic method that utilizes the

particle mesh Ewald algorithm for calculation of point charge interactions of molecular mechanical

atoms and a real-space multipolar expansion for the quantum mechanical electrostatic terms

plus a pairwise periodic correction factor for the QM and QM/MM interactions that does not

need to be re-evaluated during the self-consistent field procedure. The method is tested in a

series of molecular dynamics simulations of the ion-ion association of ammonium chloride and

ammonium metaphosphate and the dissociative phosphoryl transfer of methyl phosphate and

acetyl phosphate. Results from periodic boundary molecular dynamics (PBMD) simulations

employing the QM/MM-Ewald method are compared with corresponding PBMD simulations using

electrostatic cutoffs and with results from nonperiodic stochastic boundary molecular dynamics

(SBMD) simulations, with cutoffs and with full electrostatics (no cutoff). The present method

allows extension of linear-scaling Ewald methods to molecular simulations of enzyme and

ribozyme reactions that use combined QM/MM potentials.

1. Introduction
The profound effects of solvation on chemical reactions have
been recognized for over a century and continue to attract
intensive experimental and theoretical research effort.1 For
reactions catalyzed by enzymes or ribozymes, the environ-
ment is even more complicated. The challenge in theoretical
studies of the mechanism and reactivity of chemical pro-
cesses is to move accurate quantum electronic structure
calculations from the gas phase into the condensed phase
realm. However, for large systems such as proteins and
nucleic acids, the complexity and system size preclude the
use of even the most efficient linear-scaling electronic
structure methods2 to simulate the reaction dynamics ex-
plicitly. This is further exacerbated by the need for an

adequate treatment of long-range electrostatic interactions
in polar solvents and in the presence of mobile counterions.
Fortunately, it is often the case that the vast majority of the
system does not require a high-level and computationally
intensive quantum mechanical model. This situation is ideally
suited for application of a combined quantum mechanical
and molecular mechanical (QM/MM) approach, in which the
solute is treated quantum mechanically and the environment
by classical force fields.3-6

Electrostatic interactions are generally perceived to be the
dominant forces that stabilize transition states in biochemical
reactions7-10 and provide essential stability in long-time
dynamic simulations of proteins and nucleic acids.11-16 The
development of efficient linear-scaling electrostatic meth-
ods14,17,18(methods for which the computational effort scales
linearly with system sizes or nearly so, see below) have
greatly improved the reliability of molecular dynamics
simulations of large biological systems. In combined QM/
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MM potential models, the electrostatic environment affects
the quantum electronic polarization of the solute19 that plays
a significant role in the stabilization of macromolecules in
solution20 and the rate enhancement of some enzymes.21

Consequently, it is critical to compute long-range electrostatic
interactions accurately in QM/MM simulations of biochemi-
cal reactions. Nonetheless, due to the lack of availability of
algorithms that extend linear-scaling electrostatic methods
to combined QM/MM potentials, a large percentage of QM/
MM applications routinely employ electrostatic cutoffs.10

The present paper presents a linear-scaling Ewald method
for efficient calculation of long-range electrostatic interac-
tions in combined QM/MM simulations using semiempirical
quantum models. The method can be easily extended to QM/
MM ab initio molecular orbital and density functional theory.
In the following, the essential theory and computational
details are first outlined. Next, results obtained using the QM/
MM-Ewald method are compared with those from other
simulations by computing interionic potentials of mean force
for ion association and for phosphoryl transfer reactions.
Specifically, periodic boundary molecular dynamics (PBMD)
simulations calculated with the QM/MM-Ewald method are
compared with corresponding PBMD simulations using
electrostatic cutoffs and with results from nonperiodic
stochastic boundary molecular dynamics (SBMD) simula-
tions, with cutoffs and with full electrostatics (no cutoff).
Finally, the paper concludes with a summary of the key
results and identifies directions of future research.

2. Theory
2.1. Electrostatic Energy of a Periodic System of Point
Charges.Consider a periodic system ofN point charges{qi}
located at position{r i}, i ) 1, ‚‚‚, N, in a periodic unit cell
U characterized by the set of real-space lattice vectors{ak},
k ) 1, 2, 3. The classical electrostatic energy of this system,
excluding the infinite self-energy of the point charges, is
given by

wherer ij ) r i - r j, and the summation overn is over all
integer translations of the real space lattice vectorsn )
n1a1 + n2a2 + n3a3 for integersnk (k ) 1, 2, 3), and the
prime symbol indicates that the terms where|r ij + n| ) 0
are neglected. The summation in eq 1 is not convergent
unless the total charge of the system sums to zero (i.e., the
monopole moment of the unit cell vanishes). If the unit cell
has vanishing monopoleand dipole moments, the sum
converges absolutely; however, if the unit cell has a net
dipole moment, the sum is only conditionally convergent and
has different converged values depending on the order and
limiting manner whereby the sum is affected.22 In any case,
the expression in eq 1, under the conditions where it does
converge, does so very slowly, and is not a practical means
of computing electrostatic energies for periodic systems.

The Ewald summation convention23,24 uses an elegant
mechanism of transforming the slowly convergent sum in

eq 1 into two rapidly convergent sums over real-space and
reciprocal space lattice vectors

where

where erfc(x) is the complementary error function, defined
as erfc(x) ) 1 - erf(x), and erf(x) is the error function.25

The summation in eq 4 is over vectorsk ) 2πm, andm
sums over all integer translations of the reciprocal lattice
m ) m1a1

/ + m2a2
/ + m3a3

/ for integersmk (k ) 1, 2, 3),
where the set of reciprocal lattice vectors{a* i} are related
to the real-space lattice vectors{ai} by ai

/‚aj ) δij. In eq 4,
V is the volume of the unit cellU (V ) |a1‚a2 × a3|), and
S(k) is the structure factor26,27 and is given by

The two summations contain a parameterκ that adjusts the
relative rates of convergence. The total energy is independent
of theκ parameter, so long as the real-space and reciprocal
space sums are both sufficiently converged. In practice, these
sums are truncated at some point so as to fall below a fixed
tolerance level in accuracyεtol. If the parameterκ is chosen
such that only the|n| ) 0 term is required in eq 3 to obtain
the desired level of accuracy (i.e., theminimum image
conVention24,28can be used to perform the summations over
particles in the unit cell), then the number of reciprocal-
space lattice vectorsk required to obtain the same level of
accuracy becomes constant with respect to scaling of the unit
cell, and an orderN2 algorithm results.26,29 If the parameter
κ is optimized for scaling efficiency, then an orderN3/2

algorithm can be obtained.30 However, to extend the method
to very large systems, a so-called “linear-scaling” algorithm
is required whereby the scaling isbetter thanorder Nλ,
∀λ > 1. Such algorithms have been developed previously,18

perhaps the most commonly employed algorithm in molec-
ular dynamics simulations is the particle mesh Ewald
method27,31 that has recently been extended to higher order
multipole moments.32

Before proceeding further, it is worthwhile to briefly
clarify further eq 4. It was mentioned previously that the
original expression of eq 1 was subject to several conver-
gence restrictions. These restrictions manifest themselves
through the|k| ) 0 term, that in eq 4 has been neglected.
Clearly care must be taken with the|k| ) 0 term since the
sum involves a 1/k2 factor, that must be resolved via a
limiting procedure involving the ratio|S(k)|/|k|. From eq 5
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it is clear that|S(0)| * 0 for a non-neutral system, consistent
with the statement earlier that eq 1 is nonconvergent under
this condition. If the system is neutral, but the unit cell has
a net dipole moment (D ) ∑jqjr j), then the|k| ) 0 term
gives rise to the surface term,Esurf(qN,rN,U;P,ε) in eq 2, that
depends quadratically on the dipole momentD

where the proportionality constantR(P,ε) depends on the
macroscopic shape of the crystal,P, and the dielectric
constant,ε, of the surrounding medium.22 The physical
interpretation of the surface term is that of an energy
associated with a dipole layer on the surface of the crystal,
embedded in a polarizable dielectric medium. In the limit
that the surrounding dielectric constant becomes infinite (i.e.,
is a conductor), the energy of the surface dipole layer
vanishes, i.e.,

In the literature, this is often referred to as employing “tin-
foil” boundary conditions.33 A number of studies have
investigated whether the inclusion of the surface term is a
physically reasonable model for macroscopic systems22,34

(since in a real crystals instantaneous microscopic fluctua-
tions of the unit cell dipole moment are not propagated
synchronously to the macroscopic limit). For most simula-
tions, this terms has little overall effect and is generally
neglected. Consequently, this term will not be further
discussed, and henceforth the assumption will be made that
the sum in reciprocal space can be made neglecting the
|k| ) 0 term (and hence the surface energy correction).

It is useful to note that the Ewald sum energy, for a neutral
system, can be written in terms of a pair potentialψE(r ij)
as11,31

where the Ewald pair potential,ψE(r ij), (assuming the Ewald
parameterκ is chosen such that the summation over real-
space lattice vectors includes only the|n| ) 0 term) is given
by

In fact, efficient Ewald sum algorithms have been designed
that precompute the Ewald pair potential on a 3-dimensional
grid and use multidimensional interpolation procedures to
allow rapid evaluation in molecular dynamics simula-
tions.18,28,35This procedure, although fast, still scales as order

N2 and hence becomes limiting for large systems. However,
as will be seen shortly, for hybrid QM/MM calculations
where the QM part of the system is small, and update of the
QM contribution to the Ewald energy is required at each
step of an SCF procedure, the use of a correction to the
Ewald pair potential becomes computationally efficient.

2.2. Electrostatic Energy of a Periodic System with a
Smooth Charge Density.The focus of the present paper is
to develop a linear-scaling method for efficient calculation
of electrostatic interactions specifically for hybrid QM/MM
calculations. The case of QM/MM calculations is somewhat
specialized in that the quantum mechanical region is typically
fairly small in relation to the much larger surrounding
molecular mechanical environment. It would be considerably
costly to Fourier transform directly the localized QM density
that would require many reciprocal space lattice vectors (or
alternatively, a very fine fast Fourier transform grid) in a
typically very large QM/MM unit cell. On the other hand,
for semiempirical QM models, there are very efficient
methods for solution of the Poisson equation for the QM
charge distribution in real space.36,37As will be discussed in
more detail below, the object of the present work is to de-
velop a method that takes advantage of the specialized
features of QM/MM calculations and capitalizes simulta-
neously on the most efficient methods for calculating electro-
statics of point charge and smooth density distributions.

To facilitate development of the method, the following
general notation is introduced for the electrostatic interaction
energy between two generalized charge distributions,QA and
QB, under real-space nonperiodic boundary conditions (RS)
and periodic boundary conditions (PB) as

whereGX(r ,r ′) is the generalized Green’s function for the
Poisson equation that is a solution of

and the superscript “X” in eq 10 specifies the boundary
conditions, which can be either “RS” or “PB” for real-space
or periodic boundary conditions, respectively. The termδA,B

is equal to 1 when the charge distributions are the same,
and zero when the charge distributions are different. In the
case thatQA and QB are the same charge distribution and
that charge distribution contains point charges, it is further
assumed that the infinite self-energy of the point charges
are neglected. In short,EX[A,B] in eq 10 represents the normal
classical electrostatic energy of the charge distributionQA

interacting with the charge distributionQB, including the
possibility thatQA andQB are identical. Note also that, by
this definition,EX[A,B] ) EX[B,A] andEX[A + B, A + B] )
EX[A,A] + EX[A,B] + EX[B,B].

For a QM/MM calculation, the charge distribution is
partitioned into a QM charge distribution that consists of
the quantum mechanical electron density and nuclear core
charges and an MM charge distribution that consists of the
partial atomic charges of the MM environment. The total
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energy of the system, under periodic boundary conditions,
is thus given by

whereF represents the distribution of electron densityF of
the QM atoms (plus the core nuclear charges) andq
represents the distribution of classical MM point charges.
Recall that the number of atoms associated with the QM
charge distribution (NQM) is typically much smaller than the
number of atoms associated with the MM charge distribution
(NMM) and that the latter distribution spans a much greater
spatial extent. The main problem to overcome involves the
calculation of the electrostatics in theEPB[G,G] andEPB[G,q]
terms, since, for semiempirical methods, these terms involve
a smooth charge density with high atomic multipolar
character. However, the same electrostatic interactions for
this term are straightforward to calculate in real-space and,
in fact, are part of the computational machinery of any stand-
alone or integrated semiempirical quantum method. This
observation motivates rewriting the expression of eq 12 as

Consider now an approximate quantum mechanical charge
distribution,Q, that is modeled as a set of auxiliary point
charges such that the electrostatic potential closely represents
that of the full QM charge distribution at distances on the
order of the distance between crystal images. In the present
work, simple Mulliken charges38 are used for this purpose.
However, alternate charge partitioning,39-41 charge map-
ping,42-45 or charge fitting46,47procedures could also be used
as well. The Mulliken charge is particularly convenient to
incorporate into the Fock operator, as is discussed below,
owing to the simple linear relation with the single-particle
density matrix. At short range, the potential due to these
charges will deviate significantly from the exact quantum
mechanical potential, but at distances on the order of a full
unit cell translation away, the differences are very small. This
motivates introduction of the following approximation for
eq 13 as

The above equation for the Ewald energy is useful for
practical implementation into semiempirical QM/MM meth-
ods. It is clear, for example, that eq 14 requires evaluation
of the periodic boundary energy only for the point charge
distributions,Q andq, whereas the more complicated exact
quantum mechanical charge distribution,F, is required to
be evaluated in real space.

2.3. Combined QM/MM Potential in Real Space.
Combined QM/MM potential methods have been reviewed
extensively elsewhere5,6,48 and are only briefly outlined in
this subsection. The effective Hamiltonian for the combined
QM/MM potentials treated in the present work take the form

whereĤQM
0 is the Hamiltonian for the QM charge distribu-

tion represented as nuclei and electrons within the Born-
Oppenheimer approximation andĤMM is the molecular
mechanical potential of MM atoms. Two coupling terms,
ĤQM/MM

el and ĤQM/MM
VdW , represent interactions between QM

and MM sites: ĤQM/MM
el accounts for the electrostatic

interactions of electrons and nuclei on QM atoms with point
charges on MM sites, andĤQM/MM

vdW represents the short-
range Pauli exchange repulsion and the long-range dispersion
interactions and is modeled by a Lennard-Jones form. In real-
space calculation, which is modified below to include long-
range electrostatic interactions, the electrostatic interaction
Hamiltonian,ĤQM/MM

el , given in eq 15 is written, in atomic
units, as an exact interaction Hamiltonian of QM nuclei and
electrons with MM atoms represented by partial point charges

whereqi andZR are charges on MM and QM nuclei,Ne is
the total number of electrons in QM region, andria andRiR

are the distances of the quantum electrons and nuclei from
the classical charge sites, respectively.

Then, the real-space potential energy in the combined QM/
MM potential is computed using eq 17

whereΦ is the wave function of the solute in the field of
MM environment, in whichEQM + EQM/MM

el-RS is determined
through Hartree-Fock self-consistent-field (SCF) MO cal-
culation by solving the Roothaan-Hall equation49

whereFRS, CRS, andS denote the Fock, eigenvectors, and
overlap matrices in real space, respectively, andERS is the
diagonal matrix of orbital energies for molecular orbitals.
The combined QM/MM potential constructed in this way is
expected to be valid in the range that the QM model is
adequately large so as to capture the essential chemical
reaction process, and the MM model provides a sufficiently
accurate representation of the electrostatic environment.

2.4. Ewald Modifications to the Effective Hamiltonian
(Fock) Matrix Elements. The elements of the effective
Hamiltonian (Fock) matrix,Fµν, in a periodic boundary
system are defined as

whereE[F] is the total energy that depends on the single-
particle density matrix,F, with elementsFµν and is related
to the terms in eq 14 by

This energy can be decomposed into QM and QM/MM
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(EPB[Q,q] - ERS[Q,q]) + ERS[G,q] + EPB[q,q] (14)
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components, each of which consists of a real-space term plus
a periodic boundary correction(PBC) as

where

Note that although the energyE[F] depends on the density
matrix F in a fairly complicated way, the periodic boundary
correction terms (eqs 23 and 25) depend on the density matrix
only through the atomic charge vectorQ. The Fock matrix
can similarly be decomposed into a real-space term plus a
periodic boundary correction as

where

For the purposes of the present work, only thecorrection
to the Fock matrix (∆Fµν

PBC) that arises from introduction of
the periodicity is described, because it is presumed that the
machinery for construction of the complete Fock matrix in
real space (Fµν

RS) is already available.36,50For the purposes of
implementation, the present work formulates extension to
periodic systems as an additional term that can be included
by an auxiliary computer subroutine or module.

The task that remains is to write the periodic boundary
correction to the energy in eq 27 in terms of the set of
Mulliken charges38 {QR}, defined in NDDO-based semiem-
pirical methods as

whereR is an atom index, in a manner that is efficient to
calculate and update during the self-consistent field (SCF)
procedure. As mentioned previously, other charge parti-

tioning,39-41 charge mapping,42-45 or charge fitting46,47

methods may also be employed so long as a rigorous
mapping to the single-particle density matrix can be affected
such that the Fock matrix may be modified accordingly.
From the periodic correction to the energy (∆EPBC[Q] of eq
27), the chain relation is used to obtain the periodic correction
to the Fock matrix elements as

To maximize efficiency of the method, one must bear in
mind that the number of MM atoms,NMM, usually greatly
exceeds the number of quantum atoms,NQM. Moreover, at
each molecular dynamics integration step, the calculation of
the QM/MM total energy and gradient requires an SCF
procedure to be performed, and consequently, the periodic
potential due to the QM charge distribution must be updated
(recalculated) at each SCF iteration. Note that the atomic
positions of all the atoms in the system remain fixed during
the SCF procedure.

Consider the first periodic energy correction term,
∆EQM

PBC[Q], of eq 23. If the convention is used that the
Ewald parameterκ is chosen such that the summation over
real-space lattice vectors includes only the|n| ) 0 term, the
first periodic energy correction term can be written con-
cisely as

where∆ψE(RRâ) is the periodic correction to the Ewald pair
potential (eq 9), and with the choice ofκ above, is given by

Note that in the derivation of eq 34 the limiting relation was
used

For the QM periodic correction term (eq 33), the corre-
sponding correction to the Fock matrix must be recalculated
at each step of the SCF procedure. Since the number of
quantum atoms is small, the correction to the Ewald pair
potential (eq 34) needed for the Fock matrix can easily be
calculated once as anNQM × NQM matrix and stored and
hence not be recalculated during the SCF. This makes
calculation of the periodic correction to the Fock matrix
consist of a simple matrix multiplication of the Ewald pair
potential correction with the Mulliken charge vector, only
the latter of which changes at each iteration.
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Consider now the second periodic energy correction term,
∆EQM/MM

PBC [Q], of eq 30 (see also eq 25) that can be written
as

In this case, the corresponding correction to the Fock matrix
doesnotneed to be updated during the SCF procedure, since
the MM charge distribution is not changing. Consequently,
the periodic correction to the static potential of the MM
charges at the QM charge positions can be calculated once
as aNQM × 1 vector and simply added to the 1-electron terms
of the Fock matrix (sometimes referred to as thecore
Hamiltonian matrix). The above procedure leads to an
efficient method for calculation of long-range electrostatic
interactions in combined QM/MM calculations.

3. Computational Details
The combined QM/MM-Ewald sum method has been
implemented into a modified version of CHARMM51 (ver-
sion c30a1) interfaced with the MNDO97 program52 and
MOPAC.53 To test the method introduced in the present
work, simulations of ion association processes and dissocia-
tive mechanisms of phosphoryl transfer were performed. The
interionic potential of mean force was calculated for each
simulation and compared with calculated values from non-
periodic (full electrostatic or cutoff) and periodic (cutoff)
simulations. In particular, the following systems were
examined: the ionic association of (1) ammonium chloride
and (2) ammonium metaphosphate and the dissociative
phosphoryl transfer mechanism of (3) methyl phosphate and
(4) acetyl phosphate. The semiempirical AM1 model50 was
used for the ammonium chloride system, and MNDO/d54 for
the phosphorus-containing systems for whichd-orbitals have
been shown to be important.55 The solutes were treated fully
quantum mechanically at the semiempirical level and were
solvated in a 40.0 Å cubic box of TIP3P water molecules,56

resulting in a total of 2042 waters for the ammonium chloride
system, 2040 waters for the ammonium metaphosphate
system, 2038 waters for the methyl phosphate system, and
2035 waters for the acetyl phosphate system. Internal water
geometries were constrained using the SHAKE algorithm
in all simulations.57

A spherical cutoff scheme was used to evaluate the van
der Waals and the real-space electrostatic interactions in the
QM/MM-Ewald method and in the non-Ewald approaches.
In all cases, water molecules were included in the cutoff list
if the geometrical center of water was less than the cutoff
distance from any group center of the solute. The solute ion
pair was divided into two groups, one for each formal ion.
It should be emphasized that in evaluating QM/MM interac-
tion energies, solute-solvent (or QM-MM) interactions were
determined for the entire QM system, whenever a solvent
molecule was within the cutoff distance from any solute
(QM) group. In simulations using the QM/MM-Ewald sum
technique, a 10.0 Å group-based cutoff was used. The
nonbonded list and crystal images were updated every 25
steps during molecular dynamics simulations. For Ewald

summation, the Ewaldκ value (see above) was chosen to
be 0.340 Å-1, and the smooth particle mesh Ewald (PME)
method was employed for reciprocal space summations
between MM sites with an approximate grid size of 0.8 Å
(50× 50× 50 FFT grid)27,31and with net charge correction
to the Ewald potential suggested by Bogusz et al.33 All
simulations were propagated using the leapfrog Verlet
algorithm with 1 fs integration time step.24 Periodic boundary
conditions were used along with the isothermal-isobaric
ensemble (NPT) at 1 atm and 298 K using extended system
pressure algorithm of Andersen58 with effective mass of
500.0 amu and Hoover thermostat59 with effective mass of
1000.0 kcal/mol-ps2, respectively. In the QM/MM simula-
tions under PB without Ewald summation, electrostatic
interactions were determined using a spherical cutoff scheme
based on group separation with switching between 10.5 and
11.5 Å.

The potential of mean force (PMF) profiles have been
determined using umbrella sampling,60 in which PMF is
represented as a function of internuclear distance defined as
the N‚‚‚Cl distance (RN-Cl) in ammonium chloride, the N‚‚‚P
distance (RN-P) in ammonium metaphosphate, and the O‚‚‚P
distance (RO-P) in methyl phosphate and acetyl phosphate.
After initial 200 ps of equilibration, 25 separate umbrella
sampling windows (28 windows in the simulations of
dissociative phosphoryl transfer reactions) were executed to
span the internuclear separation up to 12.0 Å by applying a
harmonic restraining potential centered at the center of the
particular umbrella window. The spacing between neighbor-
ing windows was a function of the interionic separation
distance: 2.0, 2.5, and 5.0 Å spacings were used for
interionic separation distancesR in the range ofR e 3.0 Å,
3.0 Å e R e 4.0 Å, andR g 4.0 Å, respectively. The force
constants used were chosen and adjusted based on the shape
of PMF profile for each system tested to guarantee sufficient
overlap of the probability distribution with neighboring
windows (force constant values ranged between 80.0-150.0
kcal/mol-Å in the region of steep repulsive wall at smallR,
40.0-80.0 kcal/mol-Å in the intermediate separation, and
10.0-40.0 kcal/mol-Å in the region of large interionic
separation). Each umbrella sampling window was equili-
brated for 35 ps followed by 50 ps of production with data
collected every step. The weighted histogram analysis
method (WHAM)61 was employed to compute the potential
of mean force as a function of internuclear separation.

For additional comparison of the ion association simula-
tions, umbrella sampling simulations were also performed
to compute interionic PMF profiles with stochastic boundary
molecular dynamics (SBMD)62,63 by using spherical water
box for ammonium chloride with 1034 TIP3P water mol-
ecules and ammonium metaphosphate with 1031 TIP3P
waters. Simulations were performed without cutoff as well
as with a 11.5 Å nonbonded cutoff as in the periodic
simulations. The radius of water sphere is 20.0 Å to keep
the size of the simulation fairly close to that of the PB
simulations.

∆EQM/MM
PBC [Q] ) ∑

R

NQM

QR∑
j

NMM

qj∆ψE(RR - r j) (36)
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4. Results and Discussion
The focus of the current paper is to describe the development
and implementation of an efficient QM/MM-Ewald method
and provide benchmark simulation tests and to characterize
the effects of treatment of electrostatic interactions on the
QM/MM free energy profiles. Emphasis will not be placed
on detailed analysis of the simulations and comparison with
experiment that would first require a more quantitative
assessment of the accuracy of the quantum and solvation
models and QM/MM parameters. Development of new
semiempirical quantum models for chemical reactions is an
area of intense effort,64-70 and consequently the extension
of methods for efficient treatment of long-range electrostatic
interactions in these calculations is of prime importance.

This section presents results of simulations of ion associa-
tion and dissociative phosphoryl transfer using the QM/MM-
Ewald method developed in the present work. The effects
of periodicity and electrostatic cutoff are compared from
PMF profiles of separate simulations. For the ion association
tests (ammonium chloride and ammonium metaphosphate),
PBMD and SBMD simulations are compared both with and
without electrostatic cutoffs (the simulations without cutoffs
are referred to as the QM/MM-Ewald and full-electrostatic
SBMD for periodic and nonperiodic systems, respectively).
For the phosphoryl transfer reactions (methyl phosphate and
acetyl phosphate), PBMD simulations with and without
electrostatic cutoff are compared (i.e., PBMD with cutoff
and QM/MM-Ewald simulations). A summary of the ob-
served fluctuations in potential energy, volume, temperature,
and total force over a 10 ps interval for each of the QM/
MM-Ewald simulations are shown in Table 1. The relative
force errors for cutoff and alternative Ewald methods with
respect to the QM/MM-Ewald method are compared in Table
2. A noteable feature is that inclusion of the Ewald term as
a post-SCF correction still leads to considerable force error.
The comparison underscores the importance of inclusion of
long-range electrostatics in the simulation and updates of
the periodic contribution to the quantum polarization during
the SCF procedure since, although the post-SCF molecular
mechanical Ewald correction of QM/MM calculation using
Mulliken charge representation on quantum atoms improves
the force error significantly, it still leads to considerable error.

4.1. Association of Oppositely Charged Ions. 4.1.1.
Ammonium Chloride. Figure 1 compares the PMF profiles
for ion association of ammonium chloride as a function of
the N‚‚‚Cl distance from simulations with and without
electrostatic cutoffs under nonperiodic and periodic boundary
conditions. The zeros of the PMFs were set to the minimum
value for the ionic complex.

The electrostatic cutoff causes an artificial decrease in the
PMF for oppositely charged ions at a large separation
irrespective of whether the system is treated with spherical
stochastic boundary (SBMD with cutoff) or with periodic
boundary (PBMD with cutoff) conditions. Alternately, the
full-electrostatic simulations (QM/MM-Ewald and full-

Table 1. Relative Fluctuations in Potential Energy (σE), Volume (σV), Temperature (σT), and Average Total Force (Fave
tot ) from

MD Simulations Using QM/MM-Ewald with PME for MM Electrostaticsa

σE σV σT Fave
tot b

NH4
+‚‚‚CL- 3.60 × 10-3 5.52 × 10-3 1.01 × 10-2 2.55 × 10-2

NH4
+‚‚‚PO3

- 3.49 × 10-3 4.77 × 10-3 0.99 × 10-2 2.51 × 10-2

CH3O-‚‚‚PO3
- 3.75 × 10-3 4.04 × 10-3 1.05 × 10-2 2.51 × 10-2

CH3CO2
-‚‚‚PO3

- 3.47 × 10-3 5.42 × 10-3 1.03 × 10-2 2.54 × 10-2

a σ
E ) rmsE/Eave, σ

V ) rmsV/Vave, and σ
T ) rmsT/Tave where rms is the root mean square deviation of those properties. b The average total

force goes to zero when regular Ewald sum method is used for MM electrostatics.

Table 2. Comparison of the Force Errors on the QM
Atoms for Several Electrostatic Methods: Root Mean
Square Error (RMSE), Mean Signed Error (MSE), Mean
Unsigned Error (MUE) of Force, and Maximum Force Error
(MAXE)a

RMSE MSE MUE MAXE

Methyl Phosphateb

10.0 Å cutoff 1.618 -0.010 1.221 4.612
11.5 Å cutoff 2.221 0.052 1.726 6.073
Post-SCF Ewaldc 1.155 0.006 0.808 3.864

Acetyl Phosphated

10.0 Å cutoff 2.836 -0.064 1.961 8.404
11.5 Å cutoff 1.830 -0.015 1.195 5.271
Post-SCF Ewaldc 1.810 -0.009 1.138 6.642

a All units are kcal·mol-1‚Å-1. b The forces are computed at the
transition state of RO-P ) 3.2 Å. c The forces from Ewald potential
are added to the forces computed from 10.0 Å cutoff, in which the
Ewald potential has been computed from the Mulliken charges of the
QM atoms. d The forces are computed at the transition state of
RO-P ) 2.9 Å.

Figure 1. Comparison of potential of mean force (PMF)
profiles for the ionic separation (RN-Cl) of ammonium chloride
(NH4

+‚‚‚Cl-) in water. Profiles were constructed from MD
simulations with periodic boundary conditions using the
combined QM/MM-Ewald sum (solid blue line) and PBMD
method with 11.5 Å cutoff (dashed blue line) and with full-
electrostatic SBMD (solid red line) and SMBD with 11.5 Å
(dashed red line).
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electrostatic SBMD) show the expected flattening of the PMF
at large distances. These profiles are similar between the QM/
MM-Ewald and the full-electrostatic SBMD simulations. The
behavior of all the PMF profiles are similar up to an interion
separation of around 3.0 Å, after which, the results of the
cutoff simulations begin to diverge significantly from those
of the QM/MM-Ewald and full-electrostatic SBMD simula-
tions. The barrier for ionic dissociation is about 3.6 kcal/
mol (QM/MM-Ewald), 3.4 kcal/mol (full-electrostatic SBMD),
2.3 kcal/mol (PBMD with cutoff), and 1.7 kcal/mol (SBMD
with cutoff), respectively. The cutoff methods affect the
energy barrier by over 1 kcal/mol at the transition state (a
distance of less than 0.8 Å from the minimum) and have an
even more profound effect at larger distances in the PMF
profile.

At large separation, the PMF profiles of the simulations
with long-range electrostatics become relatively flat after
about 7.0 Å, indicating the ions are effectively shielded by
the nonlocal solvent response. Alternately, the PMF profiles
of the cutoff simulations show a steady linear drift from
around 6.0 Å out past 10 Å. This linear drift of the PMF
profiles for the cutoff simulations is due to an imbalance in
the electrostatic interactions. The dipole moments of the
waters solvating the individual oppositely charged ions are
favorably aligned in the region between the ions and
unfavorably aligned at opposite ends. The unfavorable
interactions at the ends fall outside the cutoff first as the
ions separate, while the interactions of the favorably aligned
waters in the center are retained and result in the artificial
drift in the PMF profiles. It is likely, therefore, that QM/
MM simulations of biochemical reactions that involve
association or dissociation of oppositely charged species,
such as seen in many biochemicalSN1 reactions and
photodissociation processes, may be subject to artificial
overstabilization of the separated ionic species if electrostatic
cutoffs are used.

4.1.2. Ammonium Metaphosphate.Figure 2 compares
the PMF profiles for ion association of ammonium meta-
phosphate as a function of the N‚‚‚P distance from simula-
tions with and without electrostatic cutoffs under nonperiodic
and periodic boundary conditions. The zeros of the PMFs
were set to the limiting long-range value for the QM/MM-
Ewald and full-electrostatic SBMD simulations and adjusted
such that the short-ranged repulsive wall were coincident
for the cutoff simulations. In these simulations, the MNDO/d
Hamiltonian was employed since it has been demonstrated
to provide a reliable description of biological phosphorus
compounds.54,55,70 Unlike the ammonium chloride PMF
(Figure 1) that exhibits a stable free energy minimum for
the ion-ion complex, the PMF profile for ammonium
metaphosphate decreases monotonically. In the short range
(N‚‚‚P distances less than 4.0 Å), all of the PMF profiles
are similar; however, after 4.0 Å, the PMF values for the
cutoff simulations diverge from those of the QM/MM-Ewald
and full-electrostatic SBMD simulations. The long ranged
behavior of the PMF for the QM/MM-Ewald and full-
electrostatic SBMD are quite similar, exhibiting a flat
asymptotic limit after around 6.5 Å, indicating the oppositely
charged ions are effectively screened. The PMF profiles for

the PBMD and SBMD cutoff simulations show a linear drift
after 6.0 Å, as in the ammonium chloride case (Figure 1). It
is likely that the metaphosphate plane has a random orienta-
tion relative to the ammonium ion at large separation, but,
as the ions approach each other, the plane is aligned
perpendicular to the N‚‚‚P vector. At this short separation,
the partial positive nature of phosphorus atom cancels the
favorable interactions between ammonium and oxygens in
metaphosphate and results in no stable ion-ion complex.
The results of these simulations echo those for the am-
monium chloride system: QM/MM simulations of reactions
that involve the dissociation of oppositely charged ions may
lead to separated ionic species that are significantly over-
stabilized.

4.1.3. Effect of Cutoff on the Association of Oppositely
Charged Ions. The effect of treatment of electrostatic
interactions for the association of oppositely charged ions
has been studied previously, although to our knowledge, not
with the same QM/MM-Ewald model as presented in the
present work. At long range, both ion association PMF
profiles exhibit an artificial linear drift using either PBMD
or SBMD with cutoff. The slope of the linear drift from 6
to 10.0 Å is similar between the PBMD and SBMD cutoff
simulations with values of-2.25 and-1.66 kcal/mol-Å,
respectively, for ammonium chloride and-2.01 and-1.86
kcal/mol-Å, respectively, for ammonium metaphosphate. For
opposite-charged ionic systems, the results from current
simulations indicate an unphysical roughly linear downward
drift in the PMF profiles as the ions separate. Rozanska and
Chipot also observed a similar artifact for the PMF profile
of guanidinium-acetate association from molecular dynamics
simulations using a smoothed electrostatic cutoff, whereas
the simulations using the Ewald sum showed the expected
solvent shielded behavior of solvent-separated ion pair, and
the generalized reaction field correction also significantly

Figure 2. Comparison of potential of mean force (PMF)
profiles for the ionic separation (RN-P) of ammonium meta-
phosphate (NH4

+‚‚‚PO3
-) in water. Profiles were constructed

from MD simulations with periodic boundary conditions using
the combined QM/MM-Ewald sum (solid blue line) and PBMD
simulations with 11.5 Å cutoff (dashed blue line) and with full-
electrostatic SBMD (solid red line) and SMBD with 11.5 Å
(dashed red line).
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improved the description relative to the cutoff method except
toward the edge of the cutoff sphere.71

4.2. Dissociative Phosphoryl Transfer Mechanisms.The
nonenzymatic and enzymatic chemical mechanism of phos-
phate hydrolysis reactions remains a topic of discussion and
considerable debate.72 Phosphate hydrolysis reactions are
often discussed in terms of their associative or dissociative
character73 that can sometimes be distinguished kinetically.
Kinetic measurements provide crucial data for these reac-
tions, although they do not always provide a unique
mechanistic interpretation.74,75 The associative versus dis-
sociative character is governed by many factors including
the degree of esterification of the phosphate, the protonation
state, the nature of the leaving group, and interactions with
solvent, ions, and macromolecular environment.

To test the QM/MM-Ewald method, the dianionic dis-
sociative phosphoryl transfer pathways for methyl phosphate
and acetyl phosphate were examined using PBMD simula-
tions both with electrostatic cutoff and with the QM/MM-
Ewald method. Methyl phosphate is a commonly employed
model for phosphoryl transfer reactions in kinases and
phosphatases, and acetyl phosphate represents a model for
a high-energy intermediate in the metabolism of many
bacteria.76 The first step of the dissociative pathway (Scheme
1) involves a dephosphorylation step characterized by the
departure of a solvated metaphosphate (PO3

-) group. The
second step of the reaction involves the nucleophilic
substitution to the metaphosphate by a nucleophile (usually
a hydroxide ion or a water molecule in solution). This type
of reaction is referred to as aDN + AN type mechanism in
IUPAC nomenclature.77

4.2.1. Methyl Phosphate.Figure 3 shows the computed
PMF profile for methyl phosphate. The free energy of
dissociation from current PMF profiles with QM/MM-Ewald
method is 27.1 kcal/mol for methyl phosphate, and the
activation free energy barrier is 32.8 kcal/mol. The effect of
cutoff in the PBMD simulations is to raise the activation
free energy barrier to 35.4 kcal/mol (an increase of 2.6 kcal/
mol, or 8%). The effect of cutoff is even more pronounced

on the free energy of dissociation due to cutoff artifacts of
the like-charged ions at fairly large separation (see below).

There have been several studies from experiment and
theory for the dissociative reaction of methyl phosphate. The
reaction free energy estimated from experiment by Guthrie
is 37( 3 kcal/mol.75,78This indicates the reaction free energy
calculated with the present work may be as much as 10 kcal/
mol in error. Although it is not the purpose here to present
free energy profiles with the greatest accuracy, it is worth-
while to point out the likely sources of error in order to assist
in the development of improved QM/MM models. The main
sources of error involve the semiempirical quantum model
itself, the simplistic molecular mechanical model for water,
and the QM/MM van der Waals interactions. The latter has
a tremendous effect on the reaction free energies and barrier
heights for processes that involve ion association/dissociation.
For example, the heat of formation of methoxide (CH3O-)
ion computed from MNDO/d Hamiltonian gives-39.7 kcal/
mol in the gas phase,36,54while the experimentally determined
value is-32.2( 1.1 kcal/mol.79 The error in the methoxy
ion from semiempirical MNDO/d model alone is 7.5 kcal/
mol, which is close to the 10 kcal/mol difference between
computed reaction free energy and experiment. A promising
approach toward improvement of semiempirical quantum
models is to develop reaction-specific parameters70 that
closely reproduce high-level quantum results.80,81 Addition-
ally, the model for water that was employed lacks explicit
electronic polarizability, which is expected to be important
for the stabilization of highly ionic systems such as those
studied here. Finally, the optimization of the QM/MM van
der Waals radii82-84 to reproduce correct relative solvation
free energies is critical. All of these areas will be addressed
in future work.

4.2.2. Acetyl Phosphate.Figure 4 shows the computed
PMF profiles for acetyl phosphate. The free energy of
dissociation from current PMF profiles with QM/MM-Ewald
method is 6.8 kcal/mol for acetyl phosphate, and the
activation free energy barrier is 12.2 kcal/mol. The effect of
cutoff in the PBMD simulations raised the activation free
energy barrier to 13.8 kcal/mol (an increase of 1.6 kcal/mol
or 13%). As for the dissociative phosphoryl transfer of
methyl phosphate, the effect of cutoff has an even more
profound effect on the free energy of dissociation (see
below).

Figure 3. The computed PMF from PBMD simulations using
combined QM/MM-Ewald sum potential (solid blue line) and
with 11.5 Å cutoff (dashed red line) for the dissociation of
methyl phosphate (CH3O-‚‚‚PO3

-) in water.

Scheme 1. Dissociative Phosphoryl Transfer Mechanism
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The dissociative free energy activation barrier for acetyl
phosphate is predicted to be 20.6 kcal/mol less than that for
methyl phosphate. This is largely due to the increased
stability of the acetate anion in solution, which has a much
lower pKa value (4.8) than methanol (15.5),85 and is a
considerably better leaving group. The reaction free energy
for acetyl phosphate is similarly predicted to be lower than
that of methyl phosphate by 20.3 kcal/mol. Thus, the
lowering of the activation barrier can be explained by the
added stabilization of the acetate anion relative to the
methoxide anion, in accord with the Hammond postulate.86,87

4.2.3. Effect of Cutoff on the Dissociation of Like
Charged Ions.The free energy of dissociation from current
PMF profiles with Ewald sum is 27.1 kcal/mol for methyl
phosphate and 6.8 kcal/mol for acetyl phosphate, respec-
tively. The barrier height is 32.8 kcal/mol for methyl
phosphate and 12.2 kcal/mol for acetyl phosphate from
simulations with Ewald sum, while it is 35.4 kcal/mol and
13.8 kcal/mol with the cutoff method, respectively. The radial
distribution function of water molecule around the solute at
the transition state of both reactions has been checked, but
no significant differences between QM/MM-Ewald and
cutoff simulations were observed (data not shown). Thus,
the difference in the barrier heights of dissociation reactions
can most likely be attributed to long-range electrostatic
effects that involve the ions and solvent.

The PMF profiles of the like-charged ionic systems of the
present work are nonmonotonic and exhibit a broad minimum
between 5 and 7 Å. Nonmonotonic PMF profiles arising from
the use of electrostatic cutoffs have been previously observed
by Bader and Chandler88 in the dissociation of ferric and
ferrous ion models in aqueous solution, whereas with the
use of Ewald sums, correct monotonic PMF profiles were
obtained. Furthermore, a comparison of the spatial distribu-
tion functions of like ion pairs have been investigated by
Dang and Pettitt using molecular dynamics simulation and
integral equation theory.89 The results suggest the existence
of a minimum for Cl--Cl- pair at close distances and also
a slight minimum at larger distance (6-7 Å) using a cutoff

method with switching.89 Del Buono et al. studied Cl--Cl-

pair and ferric and ferrous ion pair by computing solvent
dielectric response90 and also found an artificial minimum
at large separation by using electrostatic cutoff methods as
Dang and Pettitt,89 in which the smooth truncation of
electrostatics even amplifies this artifact. Alternately, the
PMF profiles from simulations using Ewald sums produced
the correct high dielectric shielding of the ions by water and
removed the artificial minimum at large separation.

5. Conclusion
The current paper presents an extension of Ewald summation
method to combined QM/MM calculations with semiem-
pirical quantum models. The method is tailored to systems
where the number of quantum atoms is small compared to
the number of molecular mechanical atoms such that the
Ewald contribution to the Fock matrix elements can be
evaluated efficiently during the self-consistent field procedure
required at each step of a molecular dynamics calculation.
The method is based on a partition of the total Ewald
potential into a short-ranged real-space interaction and a long-
range periodic correction. The periodic correction term
requires only a Mulliken charge representation of the charge
density and hence can be used with any efficient linear-
scaling Ewald method for point charge (or multipolar)
systems, such as the particle mesh Ewald method. If the
number of quantum atoms is sufficiently small, a consider-
able reduction in computational cost can be achieved through
direct computation of the Ewald pair potential correction for
only the quantum atoms such that the periodic correction to
the electrostatic energy can be efficiently affected at each
SCF iteration by a simple matrix multiplication with the
Mulliken charge vector. Although the method is applied with
semiempirical quantum methods in the present work, the
methodology can be extended to other quantum models such
as density-functional methods without significant code
modifications. The implementation and performance of the
method is tested in simulations of ion-ion association and
on dissociative phosphoryl transfer reactions. The PMF
profiles from these simulations are compared with those of
full-electrostatic SBMD simulations and PBMD and SBMD
simulations with electrostatic cutoff. Significant artifacts arise
in the reaction free energies and activation barriers when a
cutoff is used. These artifacts vanish when the QM/MM-
Ewald method is employed. Despite the known problems
associated with the use of electrostatic cutoffs, the majority
of present day applications of QM/MM methods routinely
employ cutoffs in simulations of biological reaction dynam-
ics. Consequently, the present method offers an important
extension of linear-scaling Ewald techniques to combined
QM/MM calculations of large biological systems.
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Abstract: Neural networks can be used generate potential energy hypersurfaces by fitting to

a data set of energies at discrete geometries, as might be obtained from ab initio calculations.

Prior work has shown that this method can generate accurate fits in complex systems of several

dimensions. The present paper explores fundamental properties of neural network potential

representations in some simple prototypes of one, two, and three dimensions. Optimal fits to

the data are achieved by adjusting the network parameters using an extended Kalman filtering

algorithm, which is described in detail. The examples provide insight into the relationships

between the form of the function being fit, the amount of data needed for an adequate fit, and

the optimal network configuration and number of neurons needed. The quality of the network

interpolation is substantially improved if gradients as well as the energy are available for fitting.

The fitting algorithm is effective in providing an accurate interpolation of the underlying potential

function even when random noise is added to the data used in the fit.

I. Introduction
The accuracy of a Monte Carlo or molecular dynamics
simulation is limited by the accuracy of the potential energy
surface used. Empirical models using explicit analytic
potential functions are fast to evaluate but limited in
accuracy. On the other hand, first-principles quantum
mechanics can provide a very accurate potential energy
surface, but the computational expense of these calculations
limits the size and length of the simulation. An ideal potential
energy surface should have the accuracy of the quantum
mechanical calculations and yet be as fast to evaluate as
empirical models. One approach to this problem is to
construct potential energy surfaces by interpolating among
the results of first-principles energy calculations at specific
configurations. However, standard interpolation methods
(such as splines or orthogonal polynomial methods) are
difficult to apply to systems with more than a few degrees
of freedom. In recent years, a number of techniques have
been developed to address this problem, and substantial

progress has been made.1-17 Nevertheless, more work is
needed to develop an accurate, efficient method that can be
routinely applied to reacting systems with many degrees of
freedom.

One method that has shown promise in a number of
applications is the artificial neural network. Several efforts
to use neural networks to describe potential functions have
now been reported, in most cases with good results.18-29

These efforts include some rather complex problems, for
example: dissociation of H2 on silicon18 and palladium24

surfaces; tetra-atomic van der Waals complexes;20 water
dimer21 and a polarizable model of liquid water;27 H2O-
Al3+-H2O three-body interactions;23 covalent C-C and
C-H interactions in hydrocarbon molecules and pure carbon
phases;26 and a number of problems in vibrational and
electronic spectroscopy.22,25,28,29The neural network is a very
general form that does not require adaptation or special
coordinates for each application. As such, it may offer a
simple, general approach to potential fits.

A particular strength of the neural network is that it can
effectively model data with noise. While nonsystematic errors
in quantum chemistry calculations are expected to be small,
there may be variation in the energy due to degrees of
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freedom that are not included in the model. For example, it
is common to model only a relatively small, chemically
active region of a larger system. The energy of the smaller
subsystem still depends on the coordinates of the surrounding
system, but if the smaller system and its surroundings are
not strongly correlated, the larger system may be modeled
as a thermal bath (as in Langevin models). This approach is
likely to be useful for small molecules on metal surfaces.
Even for systems where there are strong correlations between
the smaller system and its surroundings, the uncorrelated
variation in the larger system may be treated as noise. Indeed,
this has proven to be effective in the H2/Si(100) model
discussed in ref 18, where the ab initio calculations allowed
optimization of an entire Si9H12 cluster, while the network
modeled only the coordinates of two H and two Si atoms.

Given the effectiveness of neural networks in representing
a number of realistic multidimensional potential functions,
it is somewhat surprising that there has been little effort to
explore applications of neural networks in simple model
systems. The insight available from simple problems may
be a helpful guide to understanding the limitations of neural
networks and improving their performance.

This paper has two aims: to describe a method for
optimizing neural network parameters that is efficient and
can tolerate noise in the available data and to develop a
qualitative picture of neural network representations of
potential functions through applications to several prototype
problems. Section II describes extensions of earlier work18,30

on parameter optimization to allow use of information about
the derivatives of the potential and to allow network
architectures with multiple hidden layers. In section III, we
report applications of this approach to a number of simple
functions of one, two, and three dimensions. The density of
data and number of parameters needed to achieve a good
fit, the effect of using gradient information in addition to
energy information, effects of noise in the data, and
convergence properties of the Kalman filter are discussed
in section IV. The network’s ability to extrapolate and the
relationship between the form of the potential and the
properties of the optimal network were also examined. These
divisions among topics are artificial, since the network
structure, quality of fit, optimization routine, and data used
to achieve the fit are all intricately related. Full information
about the fit achieved for each function is summarized in
the figure captions.

II. Theory of Neural Networks and Kalman
Filtering
We begin by reviewing the terminology of neural networks
and the basic concepts of the parameter optimization routine.

A. Neural Network Architecture. The neural network
is a nonlinear function of many parameters that maps
particular inputs (in our case, coordinates) to an output (in
our case, a potential energy). The network is composed of
linear and nonlinear transfer functions, called neurons. For
the networks we will consider, the neurons can be classified
into different “layers” depending on where the input to the
neuron comes from and how the output is used. The first
(“input”) layer takes anm-dimensional vector of coordinates,

x, at which the potential is to be evaluated and outputs an
affine transformation ofx to the nodes in the second
(“hidden”) layer. Each node in the hidden layer applies a
nonlinear transfer function to its input. In the work described
here, we have used the sigmoid transfer function, (1+
ea•x+b)-1. The outputs from this layer may become the inputs
to another hidden layer of nonlinear functions. Whether there
is one hidden layer or more, the outputs from the neurons in
the last hidden layer become the inputs to the single neuron
in the “output” layer, which performs an affine transforma-
tion to produce the network output. This paper will primarily
concern a single-layer network architecture, which is es-
sentially a superposition of sigmoids, i.e., the potential is
approximated by

for a network withn hidden nodes. In this case, the adjustable
parameters are then vectorsai (each withm components),
the n values,bi, and then+1 values,ci. Thesen(m+2)+1
parameters are collectively denoted by the vectorθ. The goal
is to find network parameters such that the network output
is equal to the potential energy at the coordinates specified
by the network input. Note that the network is defined at all
values of the inputs and can be analytically differentiated
with respect to both the coordinates and network parameters.

In the “feed-forward” architectures we have considered,
neurons do not receive input from other neurons in the same
layer, or from lower layers, so there is no feedback. This
simplifies parameter fitting, while retaining adequate flex-
ibility. We have considered only architectures in which all
neurons in a given layer take inputs from all neurons in the
layer above. Thus, for a given number of coordinates, the
network architecture is completely defined by the number
of hidden neurons (or, if there are multiple hidden layers,
the number in each hidden layer).

Other transfer functions might be used, but the sigmoid
has the advantages that it is bounded (so that the coefficients
do not have to allow for cancellation between large positive
and negative values), and it has a single variable region (so
that fitting to local variation does not interfere with sigmoids
that fit variation in other regions). Moreover, a fundamental
theoretical result guarantees the efficacy of sigmoids: On a
finite interval inRn, every differentiable function is the limit
of a uniformly convergent sequence of finite sums of
sigmoids.31 As a result, a feed-forward network with a single,
finite, hidden layer can uniformly fit any smooth, continu-
ously differentiable function on the interval to within a
specified tolerance.

Finding the optimal network for fitting a particular set of
data involves both trying different numbers of hidden neurons
and optimizing the parameters of each network configuration.
In many cases, the quality of fit may be improved for a given
network configuration by increasing the amount of data used
in the parameter optimization. However, when the data are
obtained from electronic structure calculations, it is much
faster to optimize many different networks than generate
significant amounts of new data. Thus, we generally do

Ṽ(x;θ) ) c0 + ∑
i)1

n

ci(1 + eai•x+bi)-1 (1)
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thorough searches of various network architectures in at-
tempting to optimize the fit before adding more data.

B. The Extended Kalman Filter. For a given choice of
network configuration, the network parameters must be
optimized to fit the function. The optimization method must
avoid local minima of the squared-error surface with respect
to the parameters and should be stable in the presence of
noise. The extended Kalman filter has this robustness and
achieves a least-squares fit to data.32 We provide here a
qualitative guide to the filter, with enough details to allow
others to reproduce our method. However, this section is not
essential to the remainder of the paper.

A derivation of the extended Kalman filter and the role
of each element in the filter can be found in ref 33, but the
final equations are given in Table 1 (eqs T1-T8). For a finite
data set with specified inputs (i.e., coordinate values),x, the
goal is to find a network model that produces the same result,
V(x), obtained from ab initio calculations at those points.
Here we have denoted the desired output,f, as a vector. In
the simplest case, this will have a single element, the potential
energy,V(x). More generally, the network can be used to fit
a vector of outputs. In particular, we will simultaneously fit
the potential energy and its gradient, so that

Having specified a network estimate for the potential,Ṽ(x;θ),
it is a simple matter to differentiate this network with respect
to the coordinates to obtain the corresponding estimate of
the gradient. Thus, there is a known functional relationship,
f̃(x;θ), that gives the network approximation tof(x) for a
given input,x, and given network parameters,θ. Starting
from an initial random guess atθ, the Kalman filter uses
this functional relationship and comparisons betweenf̃(x;θ)
and f(x) to determine optimal parameters for the model
network.

Unlike a traditional least-squares approach that examines
the entire data set before determining a correction, the
Kalman filter examines individual pieces of data to determine
the next step. That is, the disparity between the “ideal”
network output and the current network model is calculated
for a single point in the data set using the current estimate
of θ, denotedθk. The parameter set is updated to a new value,
θk+1, to reduce the difference betweenf̃(x;θ) and f(x). The
filter is sequentially applied to each element of the data set,
and then the data are randomly shuffled and examined again.

This process continues until a converged value ofθ is
reached. The sequential approach of the filter reflects the
original application of the Kalman filter, which was devel-
oped for models of discrete time sequences.34 In the present
application, where the data have no intrinsic order, the
sequence is randomized on each pass through the data, to
eliminate any sequence dependence.

For linear models, the final parameters are the same as
for a least-squares fit. For nonlinear problems, the Kalman
filter corrections toθk are found by (locally) linearizing the
problem and finding the zero, similar to Newton’s method.
This requires the matrixHk of derivatives off̃(x;θ) with
respect toθ (eq T3), which are explicit analytic functions.

The filter does not assume the values in the data set are
exact, and the updates do not jump straight to the solution
as each piece of data is added. Instead, the data are assumed
to include Gaussian-distributed noise, which the filter tries
to remove by developing three covariance matrices,Pk, Qk,
and Rk. The latter two, Qk and Rk (eq T4), measure
uncertainties of the parameters and data, respectively.35 Even
if there is no noise in the data, there will still be uncertainty
in the optimal parameters because the network cannot fit the
data exactly.Qk andRk also serve to add numerical stability
by allowing the program to converge to a solution without
fitting the data perfectly. These matrices are not known in
advance and must be approximated,36 though the approxima-
tions can often be crude. For this study, these matrices are
approximated as a weighted average between the old matrix
and an update matrix (eq T4), withQk andRk initialized as
zero matrices. The update matrix consists of the diagonal
elements of the latest error vector. This is indicated in eq
T2, where the correction to the covariance matrix (Qk or
Rk) is indicated byDk and the corresponding error vector is
represented bydk. The error vectorf(x)-f̃(x;θ) is used to
calculate the update forRk, while Hk(f(x)-f̃(x;θ)) is used
in the update forQk. R is an empirical weighting parameter
(eq T4);36 it is usually much less than unity (Re0.15).

The heart of the Kalman filter isPk, the covariance matrix
that measures the uncertainty in the coefficients during the
execution of the filter (eq T7). The exact definition ofPk

and the derivation of its updates are given in ref 33.Pk stores
information on the direction of previous parameter updates.
The correction term in the update expression,K kHk

TPk,
describes the change in network parameter uncertainty
resulting from the update. We initializedPk as a multiple of
the identity matrix, with trace equal to the mean squared
error, i.e.,

with θ set to the initial guess of the parameter values.
With the statistics fromPk, Qk, andRk and the derivative,

Hk, the filter determines an optimal step to reduce the error
in the network prediction for the current piece of data,
without increasing the error in the fit to previous elements
of the data set. This is achieved by moving in a direction
(in parameter space) that satisfies an orthogonality condition
while reducing the error in the current measurement. The

Table 1. Equations of the Extended Kalman Filtera

λk ) λ0 ‚ λk-1 + (1 - λ0) (T1)
(Dk)i,j ) (dk)i

2‚δi,j (T2)
Hk ) ∂f̃(xk;θ)/∂θ|θ)θk (T3)
Rk, Qk ) (1 - R)‚(Rk-1, Qk-1) + R‚Dk (T4)
Ak ) [I + λk

-1‚Hk
TPk-1Hk+ Rk]-1 (T5)

Kk ) λk
-1‚Pk-1HkAk (T6)

Pk ) λk
-1‚[I - KkHk

T]Pk-1 + Qk (T7)
θk ) θk-1 + Kk [f(xk) - f̃(xk;θk)] (T8)

a The filter is used to update the network parameters, θk, so that
the network output, f̃(x;θk), approximates the desired output f(x), at
the coordinates, xk. The significance of the other filter variables and
suitable values are discussed in the text.

f(x) ) [V(x),
∂V
∂x1

|x,...,
∂V
∂xm

|x] (2)

[P0] i,j ) ∑
l)1

n

||f(xl) - f̃(xl;θ)||2‚ 1

n
‚δi,j (3)

16 J. Chem. Theory Comput., Vol. 1, No. 1, 2005 Witkoskie and Doren



covariance matrices allow larger changes in those parameters
with the greatest uncertainties. The net direction of the step
is given by the gain matrix,K k, which is multiplied by the
magnitude of the error to determine the correcting step size
(eq T8).

We have modified the traditional extended Kalman filter
by including a forgetting function,λk, that multiplies some
terms (eqs T1 and T5-T7).30 This gives the most recent steps
in the algorithm a higher weight. During the course of the
filtering operation, the forgetting function approaches unity
to develop better statistics by giving high weights to a longer
sequence of the previous data points.λ0 is the constant that
determines the rate at whichλk approaches unity andλ1 is
the initial value ofλk. The values ofλ0 andλ1 are close to
unity (λ0 g 0.99,λ1 g 0.90), but specific choices for their
values depend on how oftenλk is updated as well as the
data and potential.30

III. Network Architecture and Quality of Fit
In principle, a finite number of hidden-layer neurons can
uniformly fit any well-behaved function to a specified
tolerance.31 We have investigated the pragmatic issue of how
many neurons are needed to interpolate some common
functions to a reasonable degree of accuracy. Clearly, the
number of neurons needed will depend on the function being
fitted. The sigmoid transfer function has a single variable
region and two constant regions. To fit a function, the
network uses the variable region of each sigmoid to match
the variation in the function in some region, with multiple
neurons used to fit the function over an extended domain.
Because the sigmoid function is monotonically increasing,
a single sigmoid cannot fit a function where the derivative
changes sign. An interval between points where the derivative
changes sign will be referred to as a monotonic region. The
number of monotonic regions being fit is a lower bound on
the number of hidden-layer neurons needed to fit the
function.

In this section, we show the fits achieved for some
exemplar functions with features that are common to typical
interatomic interaction potentials. We explore the actual
number of neurons needed to achieve a qualitative fit and
the effect of additional neurons on improving the quantitative
fit. Unless stated otherwise, the domain and range for all
functions in this study is the unit interval. Data for training
the function were selected from this interval as well. Errors
reported are the integrated root-mean-square difference
between the network and the function being fitted, calculated
by integration over the unit interval (the functions are known
exactly, there is no need to base errors on a finite test set).

A. One-Dimensional Model Functions.1. Harmonic
Oscillator and Morse Potentials.As a simple example we
begin with the harmonic oscillator on the positivex-axis,
which has only one monotonic region. A single sigmoid gives
a good qualitative fit to this half-oscillator, though the best
fit achieved with one sigmoid had an rms error of 10-2.
Turning to a full harmonic oscillator (with the minimum at
x ) 0.5; see Figure 1), there are two monotonic regions and
at least two hidden-layer neurons are required. A network
with two sigmoids fits the function to a surprisingly high

accuracy, with a rms error on the order of 10-3 over the
unit interval (unshaded region of Figure 1).

Plotting the contributions of individual neurons (Figure
1) demonstrates why the fit for the full oscillator is more
accurate than that for the half-oscillator. These individual-
neuron contributions are determined by turning off the output
from other neurons in the hidden layer. For clarity, a constant
has been added to the resulting network output is equal to
the fitted function at the point where the single-neuron
network and the fitted function have equal derivatives. For
the full harmonic oscillator, most of the variation in each
monotonic region is matched by a single neuron, as in the
fit of the half-oscillator, but the second neuron makes a
nontrivial contribution that improves the fit. Although no
symmetry constraints were imposed on the network, the two
optimal neurons are related by the reflection symmetry of
the oscillator. Note that the small region of positive curvature
at the bottom of each sigmoid makes the dominant contribu-
tion over the range 0e x e 1. This is achieved by scaling
the coordinates with fairly large coefficients.

Figure 1. (Top) Harmonic oscillator potential, V(x) ) 4(x -
1/2)2 (solid curve), the individual outputs of the two neurons
used in the network fit (dashed curves), and the total network
fit (dot-dashed curve). The outputs due to the individual
neurons are shifted vertically, as described in the text, to aid
in visualizing the fit. (Bottom) Error in the neural network fit
as a function of x; the integrated rms error is 0.8 × 10-3.
Energy and derivative data at six equally spaces points in the
unshaded region (0 e x e 1) were used to optimize the
network parameters. Each neuron predominantly fits one side
of the oscillator. However, each neuron also makes a non-
negligible contribution to the other side of the oscillator
function, which prevents use of a single neuron and symmetry
to determine the parameters. The network fit remains quali-
tatively correct as it extrapolates into the shaded region, where
no data were used in parameter optimization.
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Two neurons are also successful at fitting the Morse
potential to 10-3 rms error (Figure 2). This illustrates the
flexibility of networks with the minimum number of neurons.
However, convergence was difficult to achieve for the Morse
potential, and the search had to be repeated with several
choices of initial network parameters. The large derivatives
of the repulsive wall are the likely origin of this difficulty.
Matching steep derivatives requires large network coef-
ficients, so the filter must search a large region of coefficient
space to achieve the optimal fit.

2. Sine WaVes.Figure 3 illustrates the fit to a sine wave.
Good accuracy (10-4 rms error) was achieved with three
neurons, which is again the minimum number for this case.
Again, most of the variation in each region of high slope is
matched by a single neuron, but there is an appreciable
contribution from the other neurons. The network configu-
ration also reflects the symmetry of the function. One neuron
has the antisymmetry of the sine wave and the other two
neurons are related by a periodic translation.

Functions with several monotonic regions, like the double-
period sine wave, are more difficult to fit (Figure 4). Over
the unit interval, the double-period sine wave has 5 mono-
tonic regions, requiring a minimum of 5 neurons. With so
many neurons, several are varying at any given coordinate
value, causing more interference among them. The best fit
with 5 neurons had an rms error of 10-1 (Table 2). Four
additional compensating neurons allowed a fit with 10-4 rms

error. This is a rather subtle effect: Table 2 shows that there
is a dramatic decrease in the error upon increasing the
network from eight to nine neurons. This is not simply the
gradual improvement expected with addition of more pa-
rameters; a full set of four compensating neurons appears to
be an important addition to the model.

The symmetry relationships between individual neurons
are less clear as the number of neurons increases, but the
dominant neurons of the network for the double-period sine
wave retain some symmetry properties. The plots of major
contributing sigmoids in Figure 4 show one antisymmetric
sigmoid and two pairs of sigmoids that are related by periodic
translation and reflection. However, the additional compen-
sating neurons needed for a more accurate fit show no clear
symmetry. As a result, symmetry is not maintained on
extrapolation beyond the unit interval. If the network fails
to reflect some of the symmetry of the system, it may indicate
that the network has too many (or too few) neurons. A single
neuron on one side of a symmetry plane might be matching
the same variation as multiple neurons on the other side of
the plane. For example, initial searches for a network with
nine neurons had problems converging for the double-period
sine wave, while a ten-neuron network converged quickly.
However, the ten-neuron network did not reflect any of the

Figure 2. (Top) Morse potential, V(x) ) 0.1 + 0.9(1 -
exp(0.65-5x))2 (solid curve), the individual outputs due to the
two neurons used in the fit (dashed curves), and the total
network fit (dotted curve). (Bottom) Error in the neural network
fit as a function of x; the integrated rms error is 2.0 × 10-3.
Energy and gradient data at 21 points in the unshaded region
(0 e x e 1) were used for parameter optimization. Note the
range over which extrapolation remains accurate. A fit with
data at only 11 points had a similar rms error of 2.2 × 10-3

but does not extrapolate as well as the fit shown.

Figure 3. (Top) Single-period sine function, V(x) ) sin(2πx)
(solid curve), individual output from the three neurons used
to fit it (dashed curves), and the total network fit (dot-dashed
curve). (Bottom) Corresponding error plot; the integrated rms
error is 1.0 × 10-3. Energy and gradient data at 21 equally
spaced points in the unshaded region (0 e x e 1) were used
for parameter optimization. Each monotonic segment is
primarily fit by a single neuron. The symmetry of the function
being fit is reflected by symmetry relations among the neurons,
with one antisymmetric neuron and the other neurons related
by translation. These symmetry relations make the network
fit symmetric, even when extended to the (shaded) extrapola-
tion region.
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symmetry of the system. Further searches for a nine-neuron
network were eventually successful in achieving the fit
described above, in which the dominant contributions reflect
the symmetry of the function.

B. Higher Dimensional Models. As the number of
dimensions increases, more neurons are generally needed,
though there is no clear lower bound on their number. A
single sigmoid transfer function varies only along one
generalized coordinate. This direction is a linear transforma-
tion of the input coordinates for the single hidden-layer
networks considered here, though a nonlinear dependence
on the input coordinates could be achieved with a multiple
hidden-layer network.

As in one dimension, a few neurons usually account for
most of the variation in the examples we have examined.
This can be seen for a two-dimensional model made by
coupling a Morse potential in one direction to a sinusoidal
wave in the other (Figure 5). Two neurons account for most
of the repulsive wall of the Morse potential, while two other
neurons account for the asymptotic approach to zero at large
bond lengths. Six other neurons account for small variations
caused by the more subtle sinusoidal element. Similar trends

were observed in a three-dimensional surface model (not
shown) in which the two-dimensional model of Figure 5 was
coupled to a sinusoidal variation in the third direction.

The two-dimensional anharmonic oscillator (Figure 6)
illustrates some of the subtleties of finding an optimal
network. The quality of the fit is quite good with three, four,
or five neurons, though the best fit was achieved with four
neurons (Table 2). It was difficult to find a converged
solution for a three-neuron model, though in the end the rms
error was low. The five-neuron model has one neuron that
is virtually inactive. The fifth neuron actually increases the
error in the fit by allowing the network to over-fit the data.
With added noise in the data, the quality of the fit is even
more sensitive to the number of neurons (Table 2). If there
is any noise in the data, a network with more parameters
can fit the noise, so the importance of minimizing the number
of neurons is magnified.

A two-dimensional sine function (Figure 7) has more sign
changes than the two-dimensional oscillator or surface model.

Figure 4. (Top) Double-period sine function, V(x) ) sin(4πx)
(solid curve), individual outputs from the five neurons that fit
the majority of the variation (various dashed curves), and the
total nine-neuron network fit (dotted curve). (Bottom) Corre-
sponding error plot for a fit with nine neurons; the integrated
rms error is 0.12 × 10-3. One neuron is antisymmetric, and
the other four neurons are related by reflection and translation
operations. Even with energy and gradient data at 101 points
in the unshaded region (0 e x e 1), these five neurons alone
cannot achieve a quantitative fit. Four other neurons (not
shown) make small contributions to the fit (magnitudes less
than 0.06 in the fitted region). The additional neurons quickly
grow outside the fitted region and cause the breakdown in
symmetry.

Table 2. Sensitivity of Network Error to Number of
Neurons for the Double-Period One-Dimensional Sine
Function and the Two-Dimensional Anharmonic Oscillatora

no. of neurons RMS error (% of scale) (%)

1-D Double-Period Sine Wave
(Energy and Derivative at 101 Points; No Noise)

5 8.38
8 0.71
9 0.012

10 0.019

2-D Anharmonic Oscillator
(Energy and Gradient at 36 Points; No Noise)

3 0.17
4 0.13
5 0.16

2-D Anharmonic Oscillator
(Energy and Gradient at 100 Points; 6.5% rms Added Noise)

3 3.0
4 0.9
5 1.6

a In each case, over 30 converged optimizations were performed
to find the best fit.

Figure 5. Two-dimensional surface model, V(x, y) ) 1 + 0.1-
(sin(2πx) + 9) ((1-e0.65-5y)2 -1) (white surface in all figures).
This function is compared to the best network fit (gray surface,
upper left figure) and the individual contributions of three
neurons (gray surfaces) that account for different aspects of
the variation in the function. The network fit used 10 hidden-
layer neurons; energy and gradient data at 121 points were
used to achieve an rms error of 0.9 × 10-3.
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In this case, an error of 3× 10-3 is achieved with 12
sigmoids. This can be compared to the three sigmoids needed
for comparable accuracy in the one-dimensional case.

C. Extrapolation. As with any interpolation method,
neural networks are not expected to make accurate predic-
tions beyond the region where data are available for
parameter optimization. However, extrapolation is accurate
over a surprising range for many of the functions (Figures
1-7). Typically, the network fit is qualitatively reasonable
to about 10% beyond the domain where the function was
fitted, though in some cases it can be more. For the two-
dimensional sinusoid (Figure 7), this extrapolation breaks
down around the corners of the extrapolation, i.e., the points
farthest from the data used for parameter optimization. The
network extrapolation of the higher curvature functions, like
the double period sine wave (Figure 4), is accurate over a
much shorter range than lower curvature functions, like the
single-period sine wave and the large-x side of the Morse
potential (Figures 2 and 3). Since the sigmoid eventually

becomes constant, it extrapolates best for functions that
approach a constant (e.g., the Morse oscillator at largex,
Figure 2).

D. Degeneracy.We have found many examples where
different optimizations of the same network with the same
data yield different coefficients, while the rms errors of the
different optimizations are almost identical. These network
models are distinct in the sense that no simple permutation
of the neurons makes them identical. We refer to such sets
of networks as degenerate. One might expect degeneracy in
networks with too many parameters, since making the
network too flexible would allow it to fit the data many
different ways. However, we have observed degeneracy in
networks that do not over-fit the data. For the two-
dimensional anharmonic oscillator in Figure 6, three neurons
fit the function very well (rms error of 1.7× 10-3) and do
not over-fit the function, since the optimal fit was achieved
with four neurons (rms error of 1.3× 10-3). Nevertheless,
we have found 10 distinct sets of coefficients for the three-
neuron model. Plots of the error surface show at least two
distinct topologies, though several sets of network parameters
produce similar fits to the function. Some cases of degen-

Figure 6. (Top) Two-dimensional anharmonic oscillator (with
coefficients chosen as rational approximations to random
numbers, with the condition that there is a single minimum
and no maxima in the region being fit), V(x, y) ) (4/9)x3 +
(2/27)x2y + (2/45)xy2 + (16/27)y3 + (124/135)x2 + (4/75)xy
+ (358/675)y2 - (1042/1125)x - (76/125)y + (1684/5625)
(white surface) and the four-neuron network fit to the function
(gray surface). (Bottom) Corresponding error plot. Energy and
gradient data at 36 equally spaced data points were taken
from the unshaded region (note in this case, 0 e x, y e 0.9)
to fit the network parameters. The network extrapolates this
surface into the shaded region and achieves an rms error of
1.3 × 10-3 in the unshaded region.

Figure 7. (Top) Two-dimensional sinusoidal surface model,
V(x, y) ) sin(2πx) sin(2πy) (white surface). (Bottom) Corre-
sponding error plot. The function was fit with 12 neurons.
Energy and gradients at 121 points (for a total of 363 pieces
of data) were required to achieve the fit in the unshaded region
(0 e x, y e 1) to an rms error of 3 × 10-3. The network
extrapolation breaks down at the corners, the points farthest
from the data used for parameter optimization.
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eracy may result from the symmetry of the sigmoid function

but this cannot explain the different error topologies.
E. Multiple Hidden Layers. In principle, using multiple

hidden layers can provide an alternate model that may require
fewer parameters than a single-layer network. Additional
layers act as nonlinear coordinate transformations that
become the input to the final layer. The shape of the network
fit is still a superposition of the sigmoids from the final layer,
though the nonlinear coordinate transformation can add
curvature to the sigmoids in multiple directions. However,
our results for multiple layers in one- and two-dimensional
examples are not encouraging. We find that more parameters
are required to fit functions with multiple layers than a single
layer. On the other hand, other groups studying higher-
dimensional systems have found multiple layers to be
useful,23,24 so this issue deserves further exploration.

IV. Parameter Optimization and Data Density
The examples above show the type of fits that can be
achieved with neural networks, though we have not addressed
the kind of data needed for successful parameter optimiza-
tion. The number and distribution of elements in the data
set, the type of data available (energies or energies and
derivatives), and conditioning of the data will all have a
significant impact on the ability of the optimization algorithm
to find network parameters to fit the function. In this section
we describe the quality of fit that can be achieved when
different types of data are used to determine network
parameters. To isolate the effects of the data sets, we have
used only the network architecture that yields the best fit
for each function.

A. Functional Form and Data Density.Since functions
requiring more neurons for an accurate fit will have more
parameters in the network, we expect that more data will be
needed to accurately determine all the parameters. This is
observed in the two sine waves described above. For a single-
period sine wave (Figure 3), which is fit with three neurons
and a total of 10 parameters, only 42 pieces of information
(the energy and derivative at 21 different points) are required
to achieve a rms error of less than 10-3. For the shorter
wavelength sine wave (Figure 4), 202 pieces of data (energies
and derivatives at 101 points) are required to get a com-
parable fit with nine neurons and 28 parameters. In every
case reported, including those with noise added to the data,
fewer than 10 pieces of data per parameter (whether energy
or derivative data) were needed for accurate fits. The greatest
amount of data is needed when there are large network
coefficients associated with high gradients (as for the Morse
potential) or curvature, because the output is sensitive to
small changes in the large parameters.

B. Gradient Data. In the prior section, we described fits
using a combination of energy and derivative data. Most prior
work with neural networks has used energy data alone for
parameter optimization. Here we explore the effectiveness
of using gradient data in addition to the energy. Intuitively,
one expects that a fit to both energy and gradient data will
lead to smaller fluctuations between points in the data set

than a fit to energy values alone. This expectation is borne
out in fits to the Morse potential where energy and derivative
data at 11 points results in a better fit (2× 10-3 rms error)
than energy data alone at 41 points (1× 10-2 rms error).
Thus, gradient data can dramatically reduce the density of
data needed, an important consideration if these data are to
obtained from ab initio calculations. Moreover, many ab
initio methods can calculate the gradient at a computational
expense comparable to that of the energy, som components
of the gradient vector can be obtained for the effort of one
energy (m denotes the number of coordinate inputs to the
network). In many-dimensional systems, this may partly
compensate for the increased size of the space to be sampled.
Other partial derivative information (such as the curvature)
could be used as well, though such data are less likely to be
available.

Several other examples confirm that use of gradient data
allows sampling at many fewer points than needed with
energy data alone. Table 3 shows the results of several fits
to a two-dimensional anharmonic oscillator using uniformly
spaced data. A fit with four neurons using energy data at 36
points gives an rms error of 0.4%. This error is cut in half
if energy data are used at 100 points. However, using both
energy and gradient data at only 36 points gives a fit with
even smaller error (0.1%). Since the gradient is a two-
dimensional vector, there are three pieces of data at each of
the 36 points or 108 pieces of information in total. Thus, in
this example, a lower-density data set with energy and
gradient information is more effective in allowing a good
fit than energy data alone at higher-density (with a similar
total amount of information).

The two-dimensional surface model (Figures 5) also shows
how gradient information improves the fit. Using energy data
alone at 361 points, the filter was unable to match the
sinusoidal variation of the function and a best fit of 2.4×
10-2 rms error was achieved. Using gradient information (in
addition to energies) at 121 points allowed a fit to less than
10-2 rms error. Again, while the total amount of information
is the same in these two data sets, the combination of energy
and gradient information is more effective in achieving a
good fit, and (if analytic derivatives are available in an ab
initio calculation) the combined data will be more economical
to calculate.

C. Noise.The Kalman filter is designed to allow for noise
in the data, as might be caused by variation in unmodeled

1-(1+e-ax +b)-1 ) (1+eax -b)-1

Table 3. Effects of Gradient Information and Data Density
on the Fit to the Two-Dimensional Anharmonic Oscillator
(Figure 6) with 4 Neurons

RMS error (% of range)
no. of

data points no gradients (%) with gradients (%)

Date with No Noise
36 0.4 0.1

100 0.2 0.1

Data with 6.5% rms Added Noise
36 3.2 1.0
49 2.4 1.0

100 1.4 0.9
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coordinates. To test this capability, we have added white
noise with a root-mean-square value of 6.5% of the total
range to both the energy and gradient data from the two-
dimensional anharmonic oscillator. With energy and deriva-
tive information at 36 points, the network removed most of
the added noise, fitting the oscillator function to 1% error
(Table 3). Increasing the data density to 100 points helps
very little, with a remaining error of 0.9%. Even with noise
added to the gradients, they improve the fit: without
gradients, energies at 100 points are needed to achieve 1.4%
rms error. Clearly, this method is effective even when there
is significant variation due to unmodeled coordinates.

D. Filter Convergence.The initial guess at the network
parameters is random, so there is a risk that the optimizations
will converge on a local minimum in parameter space. The
worst case in our experience was for the 3-dimensional
surface model (Morse potential coupled to 2D sinusoidal
variation) discussed above. Local minima were found in 90%
of the runs. A simple solution is to do a series of optimiza-
tions and take the best results, though it is never clear how
many examples might be needed. Nevertheless, the comput-
ing requirements for a network optimization are relatively
small. Most of the calculations described here take only a
few minutes on a typical desktop computer. The number of
iterations through the whole data set depends on the function
being fit and the size of the data set. Fewer iterations are
needed when more data are used, presumably because of
redundancy in the data.

We have found examples where the network parameters
do not converge at all for some initial parameter sets. For
example, if there are not enough neurons to match the
variation of the function, the coefficients of the network will
oscillate. This behavior has been observed even in networks
that can fit almost all of the variation, like the three-neuron
fit to the two-dimensional anharmonic oscillator. On the other
hand, if the network has too many neurons, there are more
likely to be local minima.

V. Summary and Final Comments
The neural network using sigmoidal neurons is very flexible
and can fit a range of functions typical of interatomic
potentials in low dimensions, with a small number of neurons
and a modest amount of data. The unbiased nature of the
network fit is illustrated by the remarkable fact that a two-
neuron network can model both the harmonic and Morse
oscillators with comparable accuracy over a wide range. No
assumptions about the functional form of the potential are
required to achieve a good representation. The resulting
function is infinitely differentiable and globally defined. The
fit is not only merely local, like a spline, but can also
reproduce global features, such as symmetry, without special
choices of coordinates. Even in the presence of random noise,
the network can recover the underlying relationship between
coordinates and potential. Thus, neural networks remain
promising candidates for fitting models of interatomic
interactions.

The extended Kalman filter is a robust method of achieving
a least-squares fit of network parameters to the data.
However, the number of data points needed to sample the

variation in a function will increase when there is significant
variation in more dimensions. Using gradient data is an
economical way to obtain information about variation in
higher-dimensional functions, which partly compensates for
the need to sample more coordinates. For many systems, it
may also be possible to isolate the dependence on a few
degrees of freedom, treating most degrees of freedom as a
statistically defined bath. However, more efficient methods
for data sampling will ultimately have to replace the uniform
sampling used here. Collins9 has developed an approach that
samples configurations that are likely to occur in a thermal
reaction process. By running classical molecular dynamics
(MD) trajectories on an estimate of the potential, important
regions of configuration space can be found, and new ab
initio data can be calculated in those regions. Another
example of trajectory-based sampling has been reported by
Wood et al.37 in an application to solvation thermodynamics.
Classical molecular dynamics (MD) simulations are run with
an approximate potential, followed by ab initio calculations
of solute-solvent interactions at a random sample of
configurations. Thermodynamic perturbation theory is used
to calculate the difference in free energy between the
approximate and ab initio potentials. However, if the initial
approximate potential is not reasonably close to the ab initio
potential, there will be large sampling errors. In such a case,
the approximate potential can be improved using information
from the ab initio calculations (followed by new MD
simulations with the improved potential).37 Since these ab
initio calculations are done at configurations sampled from
a thermal ensemble (albeit with an approximate potential),
they are inherently more dense at the low-energy configura-
tions that dominate the thermal ensemble. Neural networks
may be a convenient tool for modeling these improvements
to the approximate potential.
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Abstract: Reversible Digitally Filtered Molecular Dynamics (RDFMD) is a method of amplifying

or suppressing motions in a molecular dynamics simulation, through the application of a digital

filter to the simulation velocities. RDFMD and its derivatives have been previously used to

promote conformational motions in liquid-phase butane, the Syrian hamster prion protein, alanine

dipeptide, and the pentapeptide, YPGDV. The RDFMD method has associated with it a number

of parameters that require specification to optimize the desired response. In this paper methods

for the systematic analysis of these parameters are presented and applied to YPGDV with the

specific emphasis of ensuring a gentle and progressive method that produces maximum

conformation change from the energy put into the system. The portability of the new parameter

set is then shown with an application to the M20 loop of E-coli dihydrofolate reductase. A

conformational change is induced from a closed to an open structure similar to that seen in the

DHFR-NADP+ complex.

1. Introduction
Molecular dynamics (MD) simulations have been frequently
applied to protein systems to provide atomistic detail that is
unavailable to experimental methods.1-3 The time scale that
traditional MD simulations can simulate is typically in the
order of tens of nanoseconds and is severely limited by
computational resources. However, even with this length of
simulation, the large-scale conformational motions of proteins
are rare events, due to the significant energy barriers that
can lie on the potential energy surface. Methods that enhance
the rate of these events so that they occur within the length
of typical simulations are therefore of great interest.4

To address the sampling issues of molecular dynamics a
number of equilibrium and nonequilibrium methods exist.
These include generalized-ensemble methods that induce a
system’s random walk in potential energy space, thereby

overcoming conformational energy barriers.5 Within this
collection of algorithms are simulated tempering,6 the
multicanonical algorithm,7 and replica-exchange molecular
dynamics.8 Other well-studied methods range from self-
guided molecular dynamics9 (and its most recent refinement,
self-guided Langevin dynamics10), that applies an evolving
guiding force to a simulation, to CONCOORD11 (‘from
constraints to coordinates’), which predicts protein confor-
mations based on distance constraints.

Reversible Digitally Filtered Molecular Dynamics
(RDFMD) has previously been shown to amplify or suppress
motions of a specific frequency, and the amplification of
low-frequency motions has produced increased conforma-
tional sampling in a range of systems.1,2 RDFMD can be
tailored through interdependent parameter selection, and
methods to choose appropriate parameters for different
applications are therefore required. In this paper, a range of
analysis methods are presented to develop an RDFMD* Corresponding author e-mail: J.W.Essex@soton.ac.uk.
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protocol that amplifies the conformational motions of a short
peptide chain. The generated parameter set is shown to be
suitable for flexible regions of larger protein systems,
inducing a conformational change between known forms of
the E-coli dihydrofolate reductase M20 loop.

2. RDFMD
A digital filter is a list of coefficients,ci, that can be used to
weight a discrete vector input,xi, and summed to give a
vector output,y (eq 1). The filter response is the filter’s effect
on the phase and amplitude of the input signal. The greater
the number of coefficients, the closer the filter’s response
will be to that desired.

The RDFMD filter sequence begins by filling a buffer of
velocities,v, using a microcanonical (NVE) ensemble MD
simulation. This buffer has the same number of steps as the
number of filter coefficients (2m+1) in eq 2. The external
rotational and translational motion of the target system,vExt,
is removed (eq 3), and a digital filter is then applied to the
Cartesian components of the internal velocities,vInt. Filters
used for this work are designed using thefircls function in
MATLAB 12 and have the property of yielding a frequency
response of unity over the frequency range to be amplified
and zero elsewhere.2

The filters used are typically designed to extract all com-
ponents of velocities corresponding to motions most likely
to induce conformational change. These filtered velocities,
vFilt, are multiplied by an amplification factor,A, that can
be changed to adjust the energy put into the system. The
amplified velocities are then summed with the original
velocity set for the central buffer point,v0, producing a new
set of velocities,v′, that are in phase with the coordinates at
the center of the buffer (eq 4). An amplification factor of 2
would therefore produce a final set of velocities for which
the targeted frequency components have been extracted,
multiplied by 2, and then summed with the original velocities
to give a 3-fold increase in the kinetic energy of targeted
motions (as they will also be included in the full set), with

all other frequencies left unchanged, in contrast to the self-
guided Langevin dynamics method.10

From the new velocities,v′, and the central coordinates
of the buffer, conventional simulation continues both back-
ward and forward in time so that a new buffer is filled.
Another filter can then be applied, separated from the last
by a specified time delay (the filter delay). The purpose of
this delay is to allow the system to relax from the effects of
the previous filter and to allow some progression over the
potential energy surface. Filters are repeatedly applied in this
manner until the kinetic energy in the system rises beyond
some defined limit (the internal temperature cap) or until a
certain number of filters have been applied (the filter cap).

RDFMD is typically run as the combination of periods
during which the system velocities are modified by repeated
applications of a digital filter and of traditional MD in the
canonical (NVT) or the isothermal-isobaric (NPT) ensemble.
During the MD for which a thermostat is applied, the
temperature can be returned to that desired and new
equilibrated velocities and coordinates are generated. From
these another set of filter applications can be performed.

In this paper, the parameters associated with the repeated
applications of the filter will be examined, their effects on
the simulation determined, and methods for their optimization
described.

3. RDFMD Parameters
To analyze the response of a system to different RDFMD
parameters the YPGDV pentapeptide (tyrosine-proline-
glycine-aspartic acid-valine) is used (Figure 1). YPGDV has
been used in previous studies as a test case for RDFMD,2

conformational analysis,13 the ART-2′ clustering algorithm,14

and self-guided molecular dynamics.15 NMR data fromtrans-
proline YPGDV in water is known to show an approximately
equal proportion of reverse turn and extended conformations
at 273 K.16

The system was set up from an all-trans Z-matrix of
YPGDV, generated and solvated within the MCPRO pack-
age17 using 805 water molecules and 1 sodium ion. Cubic
periodic boundary conditions were used throughout. Simula-
tion was performed using the NAMD package18 with a
switching function applied to the Lennard-Jones interactions
between 8 and 12 Å, a PME treatment of electrostatics,19

and SHAKE20 was applied to all bonds involving a hydrogen
atom, with a tolerance of 10-8 Å. Explicit water was modeled

Figure 1. YPGDV with the backbone dihedral angles of interest labeled.
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by the TIPS3P water model as implemented by CHARMM,
and the protein was described by the CHARMM22 force
field.21 NAMD was developed by the Theoretical Biophysics
Group in the Beckman Institute at Urbana-Champaign.

Initially, minimization was performed with the conjugate
gradient line-search algorithm18 for a total of 22 000 steps.
The system was then gradually heated with a 20 000 step
canonical simulation at each temperature between 50 and
300 K at 50 K intervals using a 2 fstime step. A Langevin
Thermostat22 was used with a damping parameter of 10 ps-1.
80 000 steps were then performed at the target 300 K
followed by 500 000 steps (1 ns) in the isothermal-isobaric
ensemble. A Nose´-Hoover Langevin piston barostat23 with
a pressure target of 1 atm, a piston temperature of 300 K, a
damping decay parameter of 200 fs, and an oscillation period
of 400 fs was used. A further 200 000 steps (100 ps) of
isothermal-isobaric MD were then performed with a 1 ps-1

thermostat damping parameter, 300 fs barostat damping
decay, and 500 fs piston oscillation period. The simulation
state at this point is used when randomising velocities to
create a large number of starting points for RDFMD trials.
Parameters not specified for later simulations are as above.

A 20 ns isothermal-isobaric MD simulation of YPGDV
has been performed from the equilibrated YPGDV system,
and coordinate, velocity, and box dimensions were extracted
every 2 ns to give 10 largely independent starting points for
filter applications.

To investigate the parametrization of RDFMD, parameters
are systematically varied from a previously reported protocol2

and their interdependence discussed. Discussion of the
internal temperature cap parameter will be published else-
where through comparison with parallel tempering8 and MD
simulations. Unless otherwise stated, the RDFMD parameters
are as follows: a filter buffer length of 1001 steps, a target
frequency of 0-25 cm-1, an amplification factor of 4, a filter
delay of 20 steps, an internal temperature cap of 2000 K,
and a filter cap of 10 filters. All atoms in the YPGDV peptide
are targeted by the digital filter.

3.1. Frequency Target.The frequency target is the range
of frequencies that are desired for amplification or suppres-
sion by RDFMD. This parameter is the most important and
is required before all others can be optimized. It is suggested
that some form of frequency analysis on MD simulations is
performed to validate the frequency target, or alternatively
the response of the system to different filters can be tested.
If the range chosen is too broad, energy will be put into or
removed from motions that are not intended for manipulation.
If the range is too narrow however, the frequencies at which
desirable motions occur may be missed.

A 16 678 step microcanonical (NVE) ensemble simulation
was performed from the equilibrated YPGDV system for a
Fourier analysis, the results of which are reported elsewhere.2

A 16 678 step simulation with a time step of 2 fs yields
approximately a 1 cm-1 resolution. A previous suggestion
for an RDFMD frequency target of 0-25 cm-1 was based
upon an amplitude spectra argument that showed the majority
of motion in the backboneψ andφ angles (labeling as in
Figure 1) occurring at very low frequencies.2 A further
frequency analysis using the Hilbert-Huang Transform24,25

showed the presence of significant energy in the backbone
dihedral motions of YPGDV, during conformational changes,
with frequencies in the 0-25 cm-1 region.26

To examine the frequency target further, the Empirical
Mode Decomposition24 Method (EMD) has been applied to
the simulation trajectory. EMD is a method of decomposing
a signal into a set of intrinsic mode functions (IMFs). IMFs
are iteratively determined by following the highest frequency
motion and then removing the created IMF from the signal.
Thus a set of IMFs are produced, each describing the
evolution of a frequency present in the input signal. The last
IMFs describe the lowest frequencies present in the system
and leave a trend component with no wavelike properties,
similar to the dc component of a Fourier analysis. Full details
of the algorithm are described elsewhere.24

Using EMD, each backbone dihedral angle trajectory from
the NVE simulation was split into three components: high
frequency ‘noise’ from interactions with higher frequency
degrees of freedom (angle and bond stretching motions), the
dihedral angle motion that persists throughout the simulation,
and the low-frequency conformational motions resulting from
intermittent large scale conformational changes in the system.
Fortunately, the YPGDV system is inherently flexible, and
a conformational event was captured within the short NVE
simulation. This was the brief formation of aâ 3-turn
between 17.3 and 17.7 ps, as determined by the DSSP
(Dictionary of Protein Secondary Structure27) algorithm using
default options. This secondary structure change was ac-
companied, and followed, by significant rearrangement in
ψ2, φ3, andψ3, as shown in Figure 2.

EMD performed on theψ2 signal produces 11 IMFs, the
first two (those with the highest frequencies) describe
motions over 200 cm-1, as determined by Fourier transform
(FT). The last five IMFs describe motions below 25 cm-1.
The physical relevance of the IMFs is best described when
summed in frequency groups as shown in Figure 3. The
Fourier transform of the summed signals are shown in Figure
4, showing the frequency ranges that incorporate the different
signals. Although there is some frequency overlap between
the signals, it cannot be determined whether this is due to
the deficits of the EMD or the FT methods. Limitations of
the application of EMD to MD analysis have been discussed
elsewhere.28

Results show that the vibrations below 25 cm-1 are
associated with the conformational change event itself.
Therefore, the previous frequency target of 0-25 cm-1 would
only be able to amplify physically relevant signals (those of
significant amplitude present in the system) if a large scale
conformational event such as that shown is occurring. To

Figure 2. Relevant dihedral angles during the YPGDV
conformational change event.
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target the dihedral angle motions present in the entire
simulation, the frequency range 25-100 cm-1 is clearly
significant. Amplifying frequencies from 0 cm-1 should be
considered desirable in case motions are occurring at very
low frequencies. It is clear that the inherent dihedral motions,
i.e., vibrations within a potential energy well, occur pre-
dominately between 25 and 100 cm-1 and that these
frequencies should be targeted if large-scale conformational
change involving escape from local minima is to be induced.

To measure the response of the system to different
frequency targets, filters designed to amplify frequencies
below a specified value have been used. For each filter tested,
50 simulations of a single filter application to the YPGDV
system were performed. The simulation start points were
obtained from the equilibrated YPGDV system after a
random reassignment of velocities at 300 K and 1000 steps
of NPT MD simulation. Filters designed to target broader
frequency ranges will see more degrees of freedom, and thus
the amount of energy put into the system cannot be controlled
with a constant amplification factor as previously used (eq
4). Instead the amplification factor is recalculated for each

filter application so that the kinetic energy of the system is
always increased by 25 kcal mol-1. This is a comparable
energy increase to that produced by a single filter application
using the original parameter set.

For analysis, the root-mean-squared deviation (RMSD) is
calculated between the trajectories of the eight relevant
dihedral angles before and after a filter application. This is
done for 100 steps (200 fs) before and after each filter
application so that only the effects of the filter application
are measured. The sum of the RMSDs for each filter
application is considered to be a measure of induced
conformational change, and from the 50 simulations an
average and standard error can be calculated. Averaged
results are shown in Figure 5 (a), showing a drop off in the
amount of induced conformational change after 100 cm-1.
For higher frequencies, less conformational change is
induced, and energy is being less efficiently placed in the
dihedral angle motions. To demonstrate the importance of
frequency specificity, a control simulation has been per-
formed in which the filter used has a central coefficient of
1, and all other coefficients are zero. 25 kcal mol-1 of kinetic
energy is therefore put directly into the internal velocities,
across all frequencies. The upper and lower error limits of
the induced conformational change for the control simulation
are shown in Figure 5(a) by dashed lines. The amount of
conformational change induced by this simple heating
procedure is much less than that obtained using the targeted
filters.

Repeated applications of filters have been shown to be
more effective than use of a single filter and a greater
amplification factor.2 The different filter targets have been
therefore been tested for longer filter sequences, using a delay
parameter of 20 steps and a filter cap of ten. Kinetic energy
is increased by 25 kcal mol-1 by each filter application, and
the 10 equilibrated YPGDV states are used as simulation
starting points. The induced conformational change is
calculated as before for each filter buffer and summed across
all 10 buffers for each run. The results are shown in Figure
5(b). A nonfrequency specific energy input has again been
applied, and the error limits are shown with dashed lines.
As the upper limit on the frequency target is increased, the
induced conformational change is reduced. The nonfrequency
specific energy input is once again far less efficient than
any of the tested frequency targets.

There is a noticeable reduction in the conformational
change induced by the 0-25 cm-1 filter when repeated filter
applications are used. It is believed that this is due to
amplifying a frequency range that includes only low ampli-
tude motions (such as 0-25 cm-1 when a rare event is not
occurring), rather than a range in which significant motions
are apparent (such as 25-100 cm-1 where dihedral motions
persist throughout the simulation). This effect is best
investigated by analyzing an individual dihedral trajectory.
Figure 6 (a) shows a breakdown of theψ2 dihedral angle
from the first buffer of one of the simulations. Once again,
the signal is separated by EMD into IMFs that can be
grouped together as a high-frequency component (> 250
cm-1), a dominant motion of intermediate frequencies (30
cm-1-150 cm-1), and a low-frequency motion (<60 cm-1).

Figure 3. (i) ψ2 signal during the conformational change
event, (ii) sum of IMFs 1 and 2 showing motions above 200
cm-1, (iii) sum of IMFs 3 to 6 showing motions predominantly
between 25 and 250 cm-1, and (iv) sum of IMFs 7 to 11
showing motions below 25 cm-1.

Figure 4. Fourier transforms of summed IMFs derived from
the ψ2 trajectory. A Hanning window was used.
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The Fourier spectra of the grouped IMFs are reported in
Figure 6(b). The intermediate frequency motion has signifi-
cant energy around 70 cm-1, outside the previously proposed
frequency target for YPGDV. Figure 7 shows the effect of
targeting either the low (0-25 cm-1) or the low- and
intermediate- (0-100 cm-1) frequency regions identified
here. Significant conformational motions are induced in both
cases. However, amplifying the intermediate frequencies
progressively targets the highest amplitude motion, yielding
greater conformational change. In this analysis the frequency
resolution is limited by the length of the buffer, and a reduced
resolution can be expected compared with the 16 678 step
NVE simulation analyzed previously.

The filter target can therefore be selected by either
measuring the system’s response to a range of filters or by
predicting the desired frequency range from analysis of a
sample trajectory. As has been shown, it is important to target
frequencies relevant to the system, and the YPGDV results

suggest no benefit in targeting above 100 cm-1. The 0-100
cm-1 range is suggested as optimal from both measurements
of the system’s response and from analysis of frequencies
related to inherent dihedral motions.

3.2. Buffer Length. To apply a digital filter to a buffer
of velocities, the buffer must contain at least the number of
steps as there are coefficients in the filter. The larger the
number of coefficients, the closer the frequency response of
the filter will be to that for which it is designed. A shorter
buffer requires reduced computational expense, but a filter
of insufficient length will not produce a precise response
and may result in undesired amplification or suppression of
motions.

The previous filter target of 0-25 cm-1 requires 1001
coefficients to achieve a reasonable filter response.2 A higher
cap on the frequency response suggested by the analysis
presented here does not require as many coefficients to
produce a sufficiently precise response. The responses of a

Figure 5. Measure of induced conformational change with different frequency targets. Dashed lines indicate error bounds of
conformational change induced by an input of nonfrequency specific energy: (a) 50 applications of a single filter and (b) 10 filter
sequences of 10 filters.

Figure 6. Decomposition of the ψ2 trajectory from the first buffer of an RDFMD simulation: (a) (i) signal, (ii) sum of IMFs 1 and
2, (iii) sum of IMFs 3 and 4, (iv) sum of IMFs 5 to 7 and (b) Fourier transforms of split signal using a Hanning window.
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number of 0-100 cm-1 filters using different numbers of
coefficients are shown in Figure 8.

RDFMD simulations using 0-100 cm-1 filters with
different numbers of coefficients have been performed. 50
starting points for single filter applications were produced
from the equilibrated YPGDV system with randomized
velocities and 1000 steps (2 ps) of NPT MD. The amplifica-
tion of each filter is adjusted to increase the system’s kinetic
energy by 25 kcal mol-1. The induced conformational change
is calculated as before, and the results are shown in Figure
9.

No benefit of using a greater number of coefficients than
that required to produce an accurate filter response curve
(200-300 coefficients) is seen. Fewer coefficients than this
amplify higher than desired frequencies, for example, 100
coefficients targets 0-200 cm-1 and induces a similar level
of conformational change to a filter targeting this region with
1001 coefficients in Figure 5(a).

3.3. Filter Delay. A delay between filters allows energy
put into the system by the previous filter to dissipate and
thus prevents overheating, keeping the system away from
the internal temperature cap. Ideally the delay should be as
long as possible so that the energy build up is slow and the

simulation advances over the potential energy surface.
However the effects of each filter application can quickly
dissipate and too long a filter delay will result in a series of
essentially independent filter applications.

RDFMD simulations starting from each of the 10 equili-
brated YPGDV states were run using different filter delays.
Other parameters are as specified in the original protocol,
including an amplification factor of 4 and a 0-25 cm-1 filter.
The induced conformational change produced by each filter
application is shown in Figure 10 (a). The shorter the delay,
the higher the initial induced conformational change, and
the quicker the temperature cap is reached. Longer delays
(> 40 steps) do not quickly reach the temperature cap, and
more buffers are completed, each yielding progressive
amplification of targeted motions. Very long delays (> 150
steps) yield constantly low conformational changes as energy
is dissipating between buffers and the filter applications
become more independent and less progressive. The energy
build up is more clearly seen in Figure 10(b) in which the
internal protein temperature after a filter application is plotted
against the buffer number. Short delays quickly reach the
2000 K temperature cap, and long delays see no progressive
increase in internal temperature.

Figure 7. ψ2 trajectory after 0 (solid), 5 (dotted), and 10 (dashed) filter applications: (a) 0-25 cm-1 filter applied and (b) 0-100
cm-1 filter applied.

Figure 8. Filter responses of 0-100 cm-1 filters using a
different number of coefficients (shown in legend).

Figure 9. Results averaged from 50 RDFMD simulations
using filters with different numbers of coefficients.
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Using the Hilbert-Huang Transform, it is possible to see
the energy build up in dihedral angle signals (the signal
energy) for the targeted frequency range. Figure 11 shows
the results for one of the RDFMD simulation starting points
showing energy in motions occurring in the 0-50 cm-1

region. A running average over 50 steps has been performed
on the data and the first and last 100 steps of each buffer
removed as frequency information at the edges of HHT data
can be unreliable.26 A delay of 1 step shows the greatest
increase in energy for each amplification performed, but only
four buffers are completed before reaching the temperature
cap. A delay of 50 steps completes seven buffers as the
system is able to relax between filter applications. The signal
energy in the targeted frequency region reaches a higher
level, before breaching the temperature cap, than the simula-
tion with a 1 step delay, an improvement that shows the
importance of the filter delay. A long delay of 300 steps
shows little amplification, and each buffer does not neces-

sarily reach higher levels of low-frequency energy than the
last, suggesting that a long delay produces a nonprogressive
protocol.

For the original RDFMD parameter set, a filter delay
between 50 and 100 steps is clearly most suitable, showing
progressive amplification without overheating the system.

3.4. Amplification Factor. A specified input of kinetic
energy (as used to analyze the frequency target) or increase
of temperature can be used to adjust the amplification of
the velocities in RDFMD. A fixed amplification factor was
originally implemented that adjusts the level of kinetic energy
put into the system according to the amount that was already
there. If there is a small amplitude, low-frequency motion
present in the system, the filter will increase the kinetic
energy by less than if the motion is of larger amplitude.

Regardless of the method of energy insertion, for a
progressive protocol, sufficient energy must be put into the
system so the effect of one filter application has not
dissipated before the next. Equally, too great an amplification
of velocities could overheat the system, a protocol that would
risk denaturing larger protein systems.

A range of RDFMD simulations using different amplifica-
tion factors from each of the 10 equilibrated YPGDV states
has been performed. The induced conformational change is
measured as previously described. The amount of kinetic
energy in the low-frequency range is calculated from the
velocities extracted by the applied 0-25 cm-1 filter (vFilt in
eq 2). A linear correlation is found between low-frequency
energy and induced conformational change, even when
results are averaged over several simulations (typically with
a correlation coefficient> 0.8). Lines of best fit are plotted
in Figure 12 (a) to the edges of the data set. The amount of
conformational change induced when a specific quantity of
energy is measured in the filter region increases as the
amplification factor is raised. An amplification factor of 1
is inefficient, and later buffers do not explore regions of
significantly increased low-frequency energy. RDFMD is
stopped by reaching the maximum filter cap of ten. An

Figure 10. Effects of changing the filter delay parameter. Results averaged over 10 simulations: (a) conformational change
induced in filter buffer and (b) internal protein temperature after filter application.

Figure 11. HHT of dihedral angle trajectories for different filter
delay parameters. Buffers completed before reaching the
internal temperature cap shown. y-axes are shown to the
same scale for comparison.
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amplification factor of 2 yields greatly increased energy in
the filter region and is clearly the most suitable compliment
to the rest of the parameter set. At, and above, an amplifica-
tion factor of 3, the internal temperatures reach the cap of
2000 K, and simulations are stopped. Although significant
conformational motion is induced by high amplification
factors, there are minimal increases in low-frequency energy
over a small number of buffers before the temperature cap
is reached. The protocol is therefore neither gentle nor
progressive, as is desired.

The energy input required for gentle but progressive low-
frequency energy amplification is heavily dependent on the
rest of the parameter set. For example if the delay parameter
is increased to 50 steps (a suitable choice as seen from
previous analysis), an amplification factor of 2 shows slow
energy build up and factors of 3 to 4 are more suitable, as
shown in Figure 12(b). The improvement using the longer
delay is clear, with 50% more conformational motions
induced when comparing the best result to that of the
simulations using a 20 step filter delay.

Once a frequency target and filter delay have been chosen
for application to a system, analysis similar to that shown
here will assist in tailoring the method of amplification.

3.5. Interdependence of Parameters.As previously
discussed, the parameters used for RDFMD are heavily
interdependent. Once a frequency target has been chosen
however, optimizing the other parameters discussed here can
be done systematically with a small number of trial simula-
tions.

Results presented so far suggest use of a 0-100 cm-1

filter, a delay between 50 and 100 steps (0.1-0.2 ps), and
amplification factors less of than 4. An accurate frequency
response for a 0-100 cm-1 digital filter is produced using
301 coefficients (Figure 8). Averaged results for delay
parameters and amplification factors in the suggested regions
are presented in Figure 13(a),(b) as previously described.
An amplification factor of 2 is shown to be the best choice
for a filter delay of 50 or 100 steps. It is worth noting that
for both parameter sets the levels of induced conformational

Figure 12. Effects of differing amplification factor (shown in legend): (a) filter delay of 20 steps and (b) filter delay of 50 steps.

Figure 13. Results for a range of filter delay parameters and amplification factors. Data are averaged over 10 simulations and
presented as previously described: (a) filter delay of 50 steps and (b) filter delay of 100 steps.
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change and of low-frequency energy are much higher than
with previous protocols.

The protocols developed here have been optimized with
the goal of promoting maximum dihedral motion while
limiting the energy put into the system. The parameters
should be applicable to any similar protein, or part of a
protein, for which this is desired.

Discussion
It has been shown that energy dissipates between filter
applications, and this energy can dissipate into either solute
degrees of freedom with higher frequencies of motion than
those targeted (i.e. nonselective heating) or into surrounding
solvent molecules. To analyze this effect, the kinetic energy
in motions of a particular frequency can be calculated across
a buffer of velocities using a sliding digital filter. For
example, a filter that multiplies all motions with frequencies
of 0-100 cm-1 by a factor of 1 and all else by a factor of
0 can be produced with reasonable accuracy using 201
coefficients (Figure 8). By applying this filter to the first
201 velocities in an RDFMD buffer, an estimation of the
velocities in low-frequency motions can be attained for step
101. The filter can be applied to steps 2-202 to estimate
velocities at step 102 and so on across the buffer. Figure 14
shows the kinetic energy seen by a range of filters applied
in this manner. The buffer analyzed is the last before reaching
the temperature cap from an RDFMD simulation of YPGDV
using the previously reported protocol (0-25 cm-1 frequency
target, filter delay of 50 steps, 1001 coefficient filter,
amplification factor of 4, and an internal temperature cap of
2000 K). The energy that has been added is clearly localized
under 100 cm-1, as desired.

To analyze the dissipation of energy into surrounding
solvent molecules, the average temperature of solvent shells
around the YPGDV protein has been calculated across a filter
buffer. Figure 15 shows the results of a YPGDV RDFMD
simulation using the previously reported protocol. Again the
last buffer before reaching the temperature cap is used. The
first solvent shell includes all water molecules with the
oxygen atom within 3 Å of a protein atom. The number of
water molecules included in the first shell fluctuates between
84 and 141 across this buffer. The second shell includes

waters for which the oxygen atom lies within 3-6 Å of the
closest protein atom and includes between 453 and 549 water
molecules. The temperatures of the two shells increase on
either side of the filter application, showing energy dissipat-
ing into the solvent. This is considered to be desirable, as
the conformational flexibility of a protein will be linked to
the mobility of surrounding solvent molecules.

Thus it has been shown that the energy dissipation
observed after the application of a digital filter occurs
predominantly into the solvent and not to higher frequency
vibrations in the protein.

5. Application to DHFR
Escherichia colidihydrofolate reductase (EcDHFR) catalyzes
the reduction of 7,8-dihydrofolate (H2F) to 5,6,7,8-tetrahy-
drofolate (H4F) using nicotinamide adenine dinucleotide
phosphate hydride (NADPH) as a reducing agent. During
this reaction, the M20 loop (residues 15 to 20) adopts various
conformations termed “closed”, “open”, and “occluded”.29

NMR experiments show evidence of motions occurring in
this region for apo-EcDHFR.30,31X-ray structures of various
DHFR complexes can be found in the protein data bank32

including entry 1RX233 for which DHFR exhibits a closed
conformation complexed with folate and NADP+, and entry
1RA933 with DHFR in an open form complexed with
NADP+. Here we show the application of RDFMD to the
M20 loop, inducing a conformational change from the closed
to open state.

Simulations of the thermal unfolding of EcDHFR have
been published34 revealing that the adenosine-binding domain
(ABD, residues 38 to 106) partially unfolds at 400 K, and
this region has been used to monitor the affect of RDFMD
on protein stability.

An equilibrated solution structure of apo-EcDHFR has
been produced from the closed 1RX2 structure. A cubic
system with TIPS3P solvent extending at least 10 Å from
the protein surface was prepared and neutralized by the
addition of sodium ions, using the XLEAP module provided
with AMBER 7.0.35 Polar hydrogens positions and proto-
nation states were determined by WHATIF.36 The NAMD18

package was used for further simulation with force field
parameters taken from the CHARMM27 force field.21

Figure 14. Kinetic energy in different frequency bands
(shown in legend) of an RDFMD buffer.

Figure 15. Temperature fluctuations in solvent and solute
regions (shown in legend) across an RDFMD buffer.
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Mimimization was performed with the conjugate gradient
line-search algorithm,18 applying 25 000 steps to the solvent,
200 steps to the ions, 150 000 to solvent and ions, 3000 to
the protein, and a further 30 000 steps to the entire system.
Annealing was performed using a Langevin thermostat22 with
a damping parameter of 10 ps-1, for 5000 steps at 50 K,
75 000 steps at 100 K, 10 000 steps at 150 K, 125 000 steps
at 200 K, and 30 000 steps at 298 K. A Nose´-Hoover
Langevin piston barostat23 with a pressure target of 1 atm, a
piston period of 400 fs, and a piston decay of 300 fs was
applied for 125 000 steps of NPT simulation, followed by
50 000 steps with a thermostat damping parameter of 1 ps-1.
A 2 fs time step is used throughout the protocol with a
switching function applied to Lennard-Jones interactions
between 9.0 and 10.5 Å, SHAKE20 applied to all bonds
containing a hydrogen, and a PME treatment of electrostat-
ics.19

A 4 ns NPT MD simulation was performed using the final
equilibration parameters. Root-mean-squared deviations
(RMSDs) have been calculated against the known closed
(1RX2) and open (1RA9) structures with superposition across
all secondary structure units. The RMSD of the protein
secondary structure against the starting structure does not
rise significantly, with an average of 0.82 Å and standard
deviation of 0.10 Å. Motion of the M20 loop fragment is

limited with a RMSD reaching 3 Å against the closed
structure on three brief occasions, with no accompanying
decreases in RMSD against the open structure. The closed
conformer is characterized by a short distance between
residues 18 (Asn) and 49 (Ser) where favorable polar
interactions hold the M20 loop in place. TheR-carbon
distance between these two residues averages at 6.80 Å with
a standard deviation of 0.64 Å for this simulation. The
average RMSD of the ABD domain against the starting
structure is 0.90 Å for the first 1.5 ns, with a standard
deviation of 0.10 Å. It rises after 1.7 ns and remains stable
for the remainder of the simulation, with an average of 1.29
Å and standard deviation of 0.17 Å for the final 2 ns. Full
analysis of the simulation will be presented elsewhere;
however, it does not suggest that DHFR leaves the closed
conformation.

A suitable RDFMD protocol as suggested by YPGDV
analysis has been chosen for application to DHFR. A
frequency analysis of the dihedral angles in the M20 loop
of DHFR yields similar results to those observed for
YPGDV. A paper reporting this analysis in more detail is in
preparation. The protocol includes use of a 301 coefficient
filter targeting 0-100 cm-1 and a filter delay of 50 steps.
The filter is applied to all atoms in DHFR residues 15 to
20. An amplification factor of 2 has been chosen based upon
the results shown in Figure 13 and the internal temperature
capped at 1500 K. 30 filter buffers have been performed for
each simulation, and should an amplification factor of 2 bring
the internal temperature above 1500 K, it is lowered so that
the temperature cap is not breached and all buffers are
completed.

Once again 10 simulations are performed using randomly
assigned velocities at 300 K. Each simulation showed
significantly increased loop mobility, with several opening
events occurring. One of the clearest results measured the
M20 loop RMSD against that of the 1RX2 closed structure
rising from 1.38 Å to a maximum of 3.54 Å. As this occurs
the loop RMSD against the 1RA9 open structure falls from
3.31 Å to 1.60 Å. The interresidue (carbon-R) distance
between residues 18 and 49 rises from 7.13 Å to a maximum
of 9.10 Å. Figure 16 shows the progression of these factors

Figure 16. DHFR opening event during RDFMD simulation.

Figure 17. Conformers sampled during RDFMD DHFR simulation. van der Waals radii shown for residues 18 and 49: (a)
conformation most similar to known closed structure and (b) conformation most similar to known open structure.
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extracted from the forward components of the RDFMD
buffers into a single trajectory. During the simulation the
RMSD of the ABD domain does not rise above 1 Å. The
most closed and open structures from this trajectory are
shown in Figure 17.

The parameter set successfully used here has not under-
gone any further optimization, confirming the suitability of
the derived protocol for application to similar systems.
Positive results have also been produced using T4 lysozyme
and HIV-1 protease (to be presented elsewhere).

Conclusions
In this paper we have discussed methods of assigning
RDFMD parameters using the YPGDV pentapeptide as a
test case. The goal has been to maximize the induced
conformational change and promote the gentle and progres-
sive amplification of low-frequency motions. The analysis
methods developed here are intended as a guide for the
application of RDFMD to any system and for any purpose.
We anticipate, and are investigating, uses in protein folding,
ligand binding, and inducing large-scale conformational
motion in proteins of significant size.

The first parameter to be chosen is the frequency target.
For this, frequency analysis can be performed on signals
extracted from a sample trajectory, using Fourier or Hilbert
based methods. Alternatively, the response of the system to
filters amplifying different frequency regions can be used.
Both methods have been presented here, suggesting filters
targeting 0-100 cm-1 for promotion of dihedral motions.
Empirical Mode Decomposition has been used to separate
dihedral signals into high-frequency noise from coupled
degrees of freedom, a signal in the region 25-100 cm-1 that
persists throughout simulation, and a low-frequency com-
ponent that only has significant amplitude during rare
conformational events (targeted in previous studies). Use of
a higher upper limit on the frequency target allows the length
of the buffer to be dramatically lowered, thus reducing the
computational expense of each filter application. This is
particularly important when applying RDFMD to larger
systems.

The number of steps between filter applications (the filter
delay parameter) has been analyzed in detail, including the
use of the Hilbert-Huang Transform, which has only recently
been introduced to molecular dynamics simulations. Short
delays show rapid energy increases that induce dihedral angle
motions but quickly overheat the system, and so few filter
applications are performed. Long delays show no progressive
increase in low-frequency energy or induced conformational
change, the effect of each filter application having dissipated
before the next. Intermediate delays of 50-100 steps show
both slow energy increases and significant induced confor-
mational change.

There are several methods of tailoring the amount of
energy put into the system. A fixed amplification factor
inputs energy according to how much is already present in
the target region; this prevents energy being placed into
motions of low amplitude that have little relevance to the
system. Dynamically adjusting the amplification factor so
that a set amount of energy is put into the system is also of

use when comparing the system’s response to filters that
target different frequency ranges. An increase in either kinetic
energy (as presented in frequency target section) or an
adjustment dependent on the system temperature (used for
application to DHFR) can be specified.

The resulting parameter set has been successfully applied
to the M20 loop of DHFR: a frequency target of 0-100
cm-1, a filter delay of 50 steps, and an amplification factor
of 2, which is reduced should the internal temperatures reach
1500 K. A conformational change is induced from the closed
to open form, without affecting the rest of the molecule.

Further work includes the development of parameter sets
for alternative applications, and the use of derived protocols
with other systems of significant size, including T4 lysozyme
and HIV-1 protease. Long MD and parallel tempering
simulations on these systems will be presented in subsequent
publications to validate the conformational motions observed
using RDFMD.
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Abstract: The ergodic sampling of rough energy landscapes is crucial for understanding

phenomena like protein folding, peptide aggregation, polymer dynamics, and the glass transition.

These rough energy landscapes are characterized by the presence of many local minima

separated by high energy barriers, where Molecular Dynamics (MD) fails to satisfy ergodicity.

To enhance ergodic behavior, we have developed the Superposition State Molecular Dynamics

(SSMD) method, which uses a superposition of energy states to obtain an effective potential

for the MD simulation. In turn, the dynamics on this effective potential can be used to sample

the configurational free energy of the real potential. The effectiveness of the SSMD method for

a one-dimensional rough potential energy landscape is presented as a test case.

1. Introduction
The Molecular Dynamics (MD) simulation method is an
extremely important tool in chemistry, materials science, and
biology. A number of MD methods developed so far have
effectively simulated processes such as protein folding,
peptide aggregation, and surface deposition. Needless to say,
for a large set of molecules (e.g, large proteins), there are
many competing interactions (intermolecular and intramo-
lecular), leading to an extremely rough energy landscape and
thus making the process of MD simulation a challenging task.
The difficulty in sampling these rough energy landscapes is
severe due to the presence of many local minima separated
by high energy barriers. At normal temperatures, conven-
tional MD or Monte Carlo (MC) simulations will be largely
trapped in one of the various local minima. In turn, only
some parts of the entire phase space will be sampled, and
consequently structural, dynamical, and thermodynamic
properties of the system cannot be reliabily calculated.

A number of MC algorithms have been developed to
overcome the ergodicity problems posed by rough energy
landscapes, such as multicanonical MC sampling,1 parallel
tempering,2 multicanonical parallel tempering,3 and simulated
tempering.4 Multicanonical sampling replaces the Boltzmann
weight by a non-Boltzmann weight to effectively obtain a
flat energy distribution between neighboring local minima.
Parallel tempering improves sampling by using noninteract-
ing configuration (or replicas) with different temperatures.
This method can be further enhanced through a parallel

implementation by distributing the noninteracting configura-
tions across computational nodes. Furthermore, a multica-
nonical parallel tempering method, combining the advantages
of parallel tempering and multicanonical sampling, has been
developed by Faller et al.3

In the simulated tempering method, a random walk in
temperature space is used to sample the free energy space
by escaping the local energy minima. This method has been
applied to study protein folding.5 Stolovitzky and Berne6 have
also developed the catalytic tempering method to reduce the
free energy barriers and to accelerate the sampling in phase
space of complex systems without disturbing the actual
potential minima. The basin-hopping MC algorithm of Wales
et al.7 also reduces the free energy barriers as seen in their
implementation to perform global optimization on various
atomic clusters. Here, the actual potential energy surface has
been modified by a staircase-like effective potential without
disturbing the positions of any minima.

The methods discussed in the previous paragraph are
primarily based on MC. On the other hand, the Replica
Exchange Molecular Dynamics (REMD) method of Sugita
and Okamoto8 is similar to the original parallel tempering
approach but instead uses MD. Voter and co-workers9 have
also developed a class of methods called accelerated MD
methods, which includes hyperdynamics, temperature ac-
celerated dynamics, and parallel replica dynamics (PRD).
In the hyperdynamics method of Voter,10 the acceleration
of the MD simulation requires a computation of the gradients

36 J. Chem. Theory Comput.2005,1, 36-40

10.1021/ct0499175 CCC: $30.25 © 2005 American Chemical Society
Published on Web 12/08/2004



and Hessian of the potential. The PRD method can offer a
large boost in simulation time, and its success has been seen,
e.g., in a study of Cu(100) surface vacancy diffusion.11 The
accelerated MD method of Miron and Fichthorn12 is similiar
to the work of Voter where the potential energy close to the
local minima is modified by a boost potential to obtain an
effective potential. The success of this method has been
shown for a surface diffusion problem as well. Unfortunately,
the choice of the boost potential can lead to certain insta-
blities in the numerical derivatives, giving rise to artificial
energy peaks near the local minima. The conformational
flooding method of Grubmu¨ller13 has been employed to
predict structural transitions in irregular or disordered systems
where conventional MD fails. This method uses a “fictitious”
potential derived by defining a conformational substate which
samples all regions pertaining to low free energy thereby
reducing the free energy barriers in the original energy
landscape. Also, the metadynamics approach14,15 has been
developed to sample rough energy landscapes by using a
time-dependent Gaussian distribution to fill in the minima
of the original potential as they are visited, thus biasing the
dynamics to explore the more inaccessible regions of the
energy landscape. The puddle-skimming method16 and ac-
celerated MD method of Hamelberg et al.17 have also
explored mechanisms to obtain an effective potential energy
surface by using an appropriate choice of bias potential and
boost energy. The puddle-skimming method16 does not
perform well for high values of boost energy and also has
certain discontinuities in the computation of derivatives of
the real potential along the potential energy surface. This
flaw has been removed by Hamelberg et al.17 through a better
choice of the bias potential. Although, both of these methods
seem to be promising, they involve a single choice of an
effective potential surface.

The purpose of this paper is to introduce a simple and
flexible MD method to help sample rough energy landscapes.
Here, we will study the canonical ensemble generated by
the Nose-Hoover Chain (NHC)18 thermostat to sample free
energy profiles, although any MD ensemble should be
possible. The NHC has proven to be a reliable thermostat
for many systems. However, as might be expected, the NHC
does not sample ergodically in cases where there are rough
energy landscapes.

The new method presented here is called Superposition
State Molecular Dynamics (SSMD), which uses an effective
superposition potential to help sample the entire phase space.
The motivating concept behind this method is the way in
which nonstationary states in quantum mechanics can explore
the Hilbert space by undergoing transitions between basis
states. The SSMD method also has some similiarities to the
hyperdynamics approach used by Voter10 to overcome the
high energy barriers. The recent work using the puddle-
skimming method16 and the accelerated MD method of
Hamelberg et al.17 can also be largely recovered as one
possible limit of the SSMD approach. However, in SSMD
one performs a MD simulation on the effective potential
obtained by using a superposition of energy states, thus
allowing for a very large number of possible choices to aid
in the energy landscape sampling.

To demonstrate the effectiveness of the SSMD method,
we have chosen a one-dimensional potential formed from a
distribution of Gaussian barriers in which standard canonical
MD with a NHC fails to sample ergodically.

2. Method
Let us denoteV(x) as the real potential on which MD
sampling fails to be ergodic due to the presence of a rough
energy landscape. In SSMD, the MD simulation is carried
out on an effective potential using a superposition of “states”.
The SSMD effective potential is constructed by using a
combination of the real energy stateV(x) and a set of N
“fictitious” states. To illustrate this N-state superposition
concept, the simplest 2-state implementation is shown here,
whereV(x) andV0(x) are the potential energy functions in
the first and second state, respectively. It should be noted
that V0(x) is any fictitious potentialwhich can be freely
chosen to enhance the MD sampling. The effective potential
for the MD forces is then obtained by solving the 2× 2
matrix eigenvalue problem, where the highest and lowest
eigen-energies are the upper 2-state [V+(x)] and lower 2-state
[V-(x)] surface on which the MD sampling can then be
performed. It should be noted that one has the flexibility to
run the MD on eitherV+(x) or V-(x), depending on the choice
of V0(x) and/or the physical problem at hand.

Mathematically, the effective 2-state SSMD potential can
be written as

where one chooses eitherV+(x) or V-(x) for the dynamics
as discussed earlier.

The governing sampling equations for SSMD simulation
are as follows: Consider, the exact canonical distribution
function, given by

whereâ is equal to 1/kBT. Here,Q is the partition function
related toV(x) which can be written as

where Q( is the partition function corresponding to the
superposition potentialV((x) and ∆V(x) ) V(x) - V((x).
Using eqs 2 and 3 and the definition of∆V(x), we can write
the exact probability distribution function as

or

V((x) )
V(x) + V0(x)

2
( 1

2 x4V12
2 (x) + (V(x) - V0(x))2 (1)

P(x) ) e-âV(x)

Q
(2)

Q ) Q(〈e-â∆V(x)〉( (3)

P(x) ) e-âV((x)e-â∆V(x)

Q( 〈e-â∆V(x)〉(

(4)

P(x) ) P((x)
e-â∆V(x)

〈e-â∆V(x)〉(

(5)
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where

It should be noted that for the purposes of testing the
SSMD sampling, the above equations can be rearranged to
give

where the first two terms in the right-hand side of eq 7 are
obtained from the SSMD simulation and the last two terms
are easily calculated quantities for the simple potential used
in this paper to test the SSMD method.

The choice ofV0(x) is intended to enhance the SSMD
sampling and also depends on the selection of effective
potential surface, i.e., whether the SSMD is run on the upper
surface,V+(x), or the lower surface,V-(x). If the MD
sampling is performed on the upper 2-state surface, one
simple choice isV0(x) ) Vmin + nkBT, where Vmin is an
estimate of global minima of the real potential, whilenkBT
corresponds to some user-defined height aboveVmin. For
various choices ofn, the different upper 2-state surfaces,
V+(x), are shown in Figure 1a. As a result, when the real
potential is lower thanV0(x), the SSMD sampling is naturally
performed on a “filled” potential energy surface with shallow
wells. This approach is very similiar to that of the puddle-
skimming method16 and accelerated MD method of Hamel-
berg et al.,17 although it is in principle much more flexible
in the choice ofV0(x).

Alternatively, the lower 2-state surface can be chosen as
the SSMD potential, in which case a simple choice for
V0(x) is for it to be equated toVmin + nkBT + Vconf to avoid

being trapped in one of the local minima. HereVconf is a
confining potential to stop the trajectory from wandering
away from the region of interest. For various values ofn,
the different lower 2-state surfaces obtained using the above
criteria are shown in Figure 1b.

In both cases, the off-diagonal coupling elements (V12) can
be chosen as follows: When the difference betweenV(x)
andV0(x) is less than 1/2kBT, we choseV12 to be equal to
kBT. If the difference was more than 1/2kBT, thenV12 was
set asd(V(x) - V0(x)), whered ) 1/kBT, though other choices
of V12 are also possible.

The NHC equations of motion for a canonical ensemble
are described in detail elsewhere.18 However, for the sake
of completeness, the NHC equations are written as follows:

whereNp is the number of particles,M is the number of
thermostats,r’s and p’s are the particle positions and
momenta, respectively,T is the kinetic temperature, andkB

is the Boltzmann constant. In eq 8,Qi andmi are masses of
the ith thermostat and particle, respectively, whileη and pη

are the thermostat positions and momenta, respectively. The
conserved energy quantity corresponding to NHC dynamics
is expressed as

whereV(r) is the total potential energy of all particles in the
system.

The Liouville operator for the equations of motion in eq
8 is given by

where Vi is the velocity of theith particle andνηM is the
velocity associated with theMth thermostat. The first two
terms on the right-hand side of eq 10 denotes a shift in the
particle positions and velocities and is performed by using

Figure 1. Real potential energies (solid lines) and effective
SSMD potentials (dashed and dot-dashed lines) from an (a)
upper 2-state SSMD surface and (b) lower 2-state SSMD
surface.
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the velocity verlet algorithm.19 The multistep time propaga-
tion algorithm of Martyna et al.20 was used to solve eq 10.

In the present work, the real potential is computed as
follows

wherea and Ea are chosen constants andl is the order of
the polynomial. For example, values ofa ) 1.3,Ea ) 300,
and l ) 4 were used as well asa ) 2.6, Ea ) 400, whenl
) 8, as described later. Also,Ci andσi were chosen to be a
set of random numbers between 0 and 1 as given in Table
1, whereasµi was set on a equi-spaced grid with a spacing
length of 1.0 whenx e 0, and 1.25 whenx > 0, as also
shown in Table 1.

3. Results and Discussion
Results from the SSMD simulation using the NHC are for
the analytic (real) potentials computed from eq 11. The
following parameters were used for all calculations: The
mass (m) of the particle was equated to 1.0, the number of
thermostats (M) was set to 10, and the mass of the
thermostats [Q(1:M)] was equated to 1.0. The starting
thermostat positions (η) and velocities (νη) were initialized
to 1.0. All simulations were performed for 1× 108 time steps.

In the first test, the use of the upper 2-state surface as an
effective SSMD potential is demonstrated. The upper 2-state
surface is computed as the highest eigenvalue from eq 1.
The analytic potential is computed from eq 11. Figure 2a-c
shows the potential energies predicted using SSMD from
eq 7 in comparison to the analytic potential. Here, the
different effective SSMD potentials are computed using the
choice of fictitious “filling potential”,V0(x) ) Vmin + nkBT,
with various values for the parametern. It is seen that the
use of various effective SSMD potentials predicts potential
energies which are in very close agreement to the analytic
potential energy. Also, this example demonstrates that the
upper 2-state surface acts as a very effective SSMD potential
surface provided a reasonable choice of effective potential
V0(x) is made.

The choice of the lower 2-state surface as the effective
SSMD potential is given by the lowest eigenvalue from eq
1. For V0(x) in this case, we useV0(x) ) Vmin + nkBT +
(x/a)l. Figure 3 shows the predicted potential energies from

Figure 3. Predicted potential energies using NHC and the
lower SSMD effective potential, [V-(x)], in comparison to the
analytic potential at T ) 5.0 for different initial starting particle
position at (a) x ) -0.5 and (b) x ) 0.5, as described in the
text.

Table 1. Parameters Used To Compute the Analytic
Potential in Eq 11

i Ci σi µi (x e 0) µi(x > 0)

1 0.8 0.4 -9.0 11.25
2 0.8 0.4 -8.0 10.00
3 0.8 0.3 -7.0 8.75
4 0.6 0.3 -6.0 7.50
5 0.6 0.4 -5.0 6.25
6 0.6 0.4 -4.0 5.00
7 0.4 0.3 -3.0 3.75
8 0.4 0.3 -2.0 2.50
9 0.4 0.4 -1.0 1.25
10 0.4 0.4 0.0 0.00

V(x) ) Ea∑
i)0

10

Ci exp{- (x - µi)
2/2σi

2} + (x/a)l (11)

Figure 2. Predicted potential energies using the upper SSMD
effective potential [V+(x)], in comparison to the analytic
potential, with the SSMD fictitious potential given by V0(x) )
Vmin + nkBT, at heights (a) n ) 20, (b) n ) 25, (c) n ) 30,
above the global minima [Vmin].
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NHC and SSMD in comparison to the analytic potential at
simulation temperatureT ) 5.0, for l ) 4 anda ) 1.3. The
MD sampling was performed with the choice ofn ) 5 in
the fictitious potential. Here, different initial particle positions
are used to test the SSMD method. As seen in Figure 3a,b,
NHC on the actual potentialV(x) samples poorly as it gets
trapped in one of the local minima. However, SSMD
significantly increases ergodicity and predicts a result from
eq 7 that resembles very closely the analytic potential.

The effectiveness of the SSMD method was further tested
by choosing an analytic potential such that the walls rise
more steeply (l ) 8, a ) 2.6, in eq 11; see also Table 1). As
seen from Figure 4, this analytic potential shows more high
barriers in the energy profile as compared to the example
shown in Figure 3. Also, to ensure diversity in our tests and
to further explore the performance of SSMD, simulations at
two different temperatures are shown in Figure 4a,b. Again,
the effectiveness of SSMD in sampling the rough energy
landscape is observed, while standard NHC MD fails
dramatically.

4. Concluding Remarks
The SSMD method has been presented in this paper and used
to sample some model rough energy landscapes. It has been
shown that the SSMD method is a simple and low cost
computational method to ergodically sample potential energy
surfaces. One possible advantage of SSMD is that it requires
information primarily about global minima of the analytic

potential. Also, the fictitious potential (V0(x) in SSMD) is
completely general, and the choice between the upper 2-state
or lower 2-state SSMD surface for the MD sampling can be
made depending on the problem at hand. A mechanism to
alternate between the upper 2-state and lower 2-state surface
could also be implemented. In fact, in realistic situations the
user may have a large number of possible choices for the
SSMD fictitious potentialV0(x) based on the need to
overcome physical barriers in the actual potential energy
surface. The choice of the off-diagonal element in SSMD
should be carefully considered as well for multidimensional
potentials, but here again there are many possible choices.
SSMD therefore seems to be a promising and general tool
to study systems with rough energy landscapes. Applications
and further developments for realistic systems will be
explored in the future.
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Abstract: In previous work we have shown that the PBE0 hybrid density functional method

with the MG3 all-electron basis set is an accurate method for calculating the atomization energies

of small aluminum clusters (Al2-Al7). However, the MG3 basis set is very expensive for molecules

much larger than Al13; therefore, we have developed a new effective core potential (ECP) method

for aluminum to reduce the cost of obtaining accurate results for nanoparticles. Our method

involves a hybrid of the Stuttgart semiempirical effective core potential and the compact effective

potential (CEP) potential, and it uses a newly optimized polarized valence triple-ú basis set.

The combination of the new ECP and the new polarized valence triple-ú basis set for Al is

called the Minnesota effective core (MEC) method for Al. The method was optimized with a

training set of atomization energies and geometries for AlH, AlC, AlO, AlCCH, Al2H, Al2C, Al2O,

and Al3 and atomization energies of three Al13 structures, and we tested it on six test sets

composed of 20 atomization energies for systems as large as Al13. We also present an improved

all-electron polarized triple split basis set for oxygen, called 6-311+G(d*,p). For the test sets,

the mean unsigned error (MUE) of the new method with respect to PBE0/MG3 is 0.06 eV for

atomization energies and 0.007 Å for bond lengths, which constitutes a very significant

improvement over the quality of the results that can be obtained with effective core potentials

and valence basis sets in the literature (of the eight methods in the literature, the best previous

method had average errors of 0.63 eV and 0.036 Å). We have also tested the MEC method

with a variety of hybrid density functional theory, hybrid meta density functional theory, and

pure GGA and meta GGA functionals and found that the average MUE, relative to each functional

with all-electron basis sets, is 0.04 eV for atomization energies and 0.009 Å for bond lengths

for the new effective core method and 0.16-0.20 eV and 0.013-0.033 Å for effective core

potential and valence basis sets in the literature.

1. Introduction
Aluminum clusters have been the focus of several studies.1-18

Clusters are of interest because their energetic and structural
properties often differ significantly from the corresponding
bulk properties. It is important to study how the properties
change as the cluster size is increased into the nanoparticle
range and then as the cluster properties eventually converge
to the bulk limit. Unfortunately, though, experimental data
are limited to small clusters19-23 and bulk Al. Thus, theory

can play an important role in studying clusters and nano-
particles in the intermediate size range.

In previous work,18 we have begun testing electronic
structure methods for Al. We tested several hybrid density
functional theory24-29 (HDFT) methods and found that the
PBE028 method (also called PBE1PBE) with the MG330-36

basis set (which is a polarized triple-ú basis set with diffuse
functions) was accurate to within 0.012 eV per atom (for
Al2-Al7). Using the PBE0 method with the MG3 basis set
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is impractical for systems that have more than about 15
atoms, because the computational effort (measured by CPU
time) required for an energy calculation scales asN4 (where
N is the number of basis functions). One could reduce the
size of the basis set, but that will reduce the reliability of
the calculation. Another alternative would be to use an
effective core method (EC method), which uses an effective
core potential37-44 (ECP) with a valence-only basis set (which
we will henceforth call a valence basis set); this kind of
treatment replaces the chemically inactive core electrons with
an analytic potential. This reduces the CPU time required
for a calculation because one does not need to expand the
core orbitals in basis functions, and thus the overall size of
the basis set is reduced. This represents a significant savings
for Al, which has 10 core electrons (1s22s22p6) and 3 valence
electrons. Thus, for Al, the use of an EC method reduces
the 13-electron problem to a 3-electron problem.

2. Effective Core Potentials
A full discussion of ECPs is beyond the scope of this paper.
Overviews are available elsewhere,38,41but a brief overview
of the basic theory is needed here to establish notation and
motivate development. As stated in the Introduction, an EC
method uses an effective potential to mimic the presence of
the core electrons. First the nuclear charge is reduced by
the number of missing core electrons. Then, a theoretically
justified form of the potential centered at a given nucleus is
a sum of angular-momentum-dependent terms

where l is the angular momentum quantum number,m is
the magnetic quantum number,L is the maximuml found
in the core,|lm〉〈lm| is the projection operator for quantum
numbersl andm, Vl

eff is the effective potential for angular
momentuml, r is the distance from the nucleus, andVeff is
the total effective potential. The projection operators are
present in part to represent Coulomb and exchange interac-
tions with the missing core electrons and in part to impose
the orthogonality effect of the absent core electrons on the
valence electron wave function. Optionally, the effective
potential can also include core-valence correlation effects.43

In principle, the sum in eq 1 should go froml ) 0 to l ) ∞,
but eq 1 approximates allVl

eff terms forl G L + 1with VL+1
eff

since the higher-l orbitals have no orthogonality effect and
have similar Coulomb interactions with the core. For Al, the
maximum l found in the core is 1, soL + 1 is 2. Vl

eff is
expanded, for ease of integration, as a sum of Gaussian
functions

whereai is a negative real number ifl ) L + 1 and a positive
real number ifl e L, ni is an integer between 0 and 2, and
Ri is a positive real number. The physical interpretation of
this potential is that it is repulsive for the angular momenta
corresponding to the core orbitals, because of the orthogonal-

ity effect, and it is attractive for the angular momenta that
are not present in the core, because of the screened
Coulombic interaction with the missing nuclear charge as
the valence electrons penetrate into the core region.

Some of the potentials that will be discussed are called
ab initio ECPs, because the ECPs are extracted from an ab
initio Hartree-Fock (or relativistic Hartree-Fock) atomic
wave function. Ab initio ECPs are obtained from an all-
electron wave function in two steps: (1) The valence orbitals
from the all-electron calculation are transformed into pseudo-
orbitals. There are different methods of obtaining the pseudo-
orbitals, but all of the methods force the pseudo-orbitals to
be smooth and nodeless and have the correct behavior in
the valence region. (2) The numerical effective potential for
each value ofl is determined such that the eigenvalues of
the pseudo-orbitals in the field of the effective core potential
are equal to the eigenvalues of the all-electron valence orbital.
For simulating neutral species, this should be done in a
calculation on the neutral atom (as opposed to an ion with a
single valence electron).

The ab initio ECPs that we will discuss in this paper are
the LP, CEP,40 LanL2,42 Stuttgart relativistic ab initio
potential,44 and SHC.39 In general, ECPs are developed in
conjunction with specific basis sets. The LP potential is
obtained by the method of Kahn et al.38 and is available45,46

with a double-ú basis set. The CEP acronym stands for
compact effective potential and is sometimes referred to as
the SBKJC potential, which stands for Stevens, Basch,
Krauss, Jasien, and Cundari. The original CEP potential was
developed for Li- Ar.40 Stevens, Basch, Krauss, and Jasien
later extended the CEP potential to include elements K-
Rn.47 Cundari and Stevens extended the CEP potential further
to include Ce- Lu.48 The CEP potential is available for Al
with optimized single-, double-, and triple-ú basis sets, and
these methods are denoted CEP-4G, CEP-31G, and CEP-
121G, respectively. The LanL2 potential is named for Los
Alamos National Laboratory, and it also referred to as the
Hay and Wadt potential.42 The LanL2 potential is available
for Al with single and double-ú basis sets; these are denoted
as LanL2MB and LanL2DZ, respectively. The SHC ECP
stands for shape- and Hamilitonian-consistent ECP; it was
developed by Rappe et al. and is available with a double-ú
basis set for A1.39 The Stuttgart relativistic potential (ab-
breviated SRP in this paper) is available with a double-ú
basis set and is named as such because it was fit to a
relativistic wave function. The LanL2 potential uses a
relativistic reference wave function for elements heavier than
Kr, and the CEP potential also uses a relativistic wave
function for elements heavier than K.

Because ab initio ECPs are fitted to SCF wave functions,
relativistic effects can only be accounted for if the original
SCF wave function is relativistic;41,44however, semiempirical
ECPs can include relativistic effects if they are fitted to
experimental data. The Stuttgart semiempirical potential of
Igel-Mann et al.; denoted SECP, is a semiempirical ECP that
was fit to the experimental energies of single-valence-electron
ions,43 which is different from the SRP potential, which was
fit to a relativistic wave function.44 Thus, the relativistic
effects are implicitly included in the potential, whereas the

Veff ) VL+1
eff (r) + ∑

l)0

L

[Vl
eff(r) - VL+1

eff (r)] ∑
m)-l

l

|lm〉〈lm| (1)

Vl
eff ) ∑

i)1

imax

air
nie-Rir2

(2)
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SRP potential includes the relativistic effects explicity. The
functional form of the semiempirical Stuttgart potential43 (and
the SRP) is

where all notation is defined in eq 1 except forVpol, which
is a polarization potential. The form of the polarization
potential is

whereR is the dipole polarizability of the core, andλ is an
adjustable parameter. The Gaussian9845 and Gaussian0346

implementations of the Stuttgart semiempirical potential
(which we will refer to as SECP for Stuttgart semiempirical
effective core potential) do not include the polarization
potential. We have fit the polarization potential to a sum of
powers times Gaussians

whereAi andBi are adjustable parameters,ni is an adjustable
integer in the range 0-2, and GFP denotes Gaussian fitted
polarization potential. The parameters are given in Table 1.
Also, it should be noted that the Stuttgart potentials are not
of the physical form specified in eq 1 because they haveVl

eff

) 0 for l G L + 1. Later in the paper, we will use a modified
version of the SECP potential called MSECP (modified
Stuttgart effective core potential). In the MSECP, we used
thel ) 2 potential for all values ofl G L + 1, and we rewrote
eq 3 so that it is of the same form as eq 1; thus the MSECP
is of the same form as the ab initio ECPs.

In this paper, we will present a new EC method based on
a training set of dissociation energies and geometries
calculated with the PBE0 method and the MG3 all-electron
basis set. We parametrized a new combination of ECP and
valence basis set for use with the PBE0 method to reproduce
the all-electron PBE0/MG3 results. By doing this, we will
obtain a physical EC method that accurately reproduces the
hybrid density functional theory calculations with the all-
electron basis set. If we had instead parametrized against a
data set of experimental results or a data set of explicitly
correlated results, the EC method would also be canceling
the errors that are inherent in the PBE0 density functional
method; with such a procedure it would not necessarily be
a physical EC method. Thus, the EC method developed here

can also be used with other electronic structure methods; it
is not limited to PBE0. This will be explicitly demonstrated
in section 6.

3. Test Sets
3.1. Homonuclear Test Set.We will use six test sets in
this article. The first test set is called the homonuclear test
set. The homonuclear test set includes optimized Al2 and
Al3 structures and three Al13 structures with fixed bond
lengths. We use the ground electronic states of Al2 and Al3,
which are 3Πu

1,2,5,49 and 2A1′.3,4,6,17 The minimum-energy
structure of Al3 is an equilateral triangle; thus, our test set
includes two bond lengths (Al2 and the one degree of freedom
in Al3). The Al13 structures have face-centered cubic (FCC),
hexagonally close packed (HCP), and icosahedral symmetry
(see Figure 1). The bond length that we have used for the
FCC, HCP, and icosahedral structures is 2.8635 Å, which is
the bond length in the bulk metal. This was obtained by
dividing the experimental (298 K) lattice constant, 4.04964
Å,50 by x2.

3.2. Heteronuclear Test Set.The second test set is the
called the heteronuclear test set. The molecules in the
heteronuclear test set are AlH, AlC, AlO, AlCCH, Al2H,
Al2C, and Al2O, and they have all been optimized by the
all-electron PBE0/MG3 method. The first and second row
diatomics have been thoroughly studied experimentally and
computationally.51 The AlX (X ) H - F) diatomics, in
particular, have been thoroughly studied by Gustev et al.52

They concluded that the ground states of AlH, AlC, and AlO
are1Σ+, 4Σ-, and2Σ+, respectively. Their conclusions agree
with previous calculations51 and our PBE0/MG3 optimiza-
tions for AlH, AlC, and AlO.

There has been little theoretical work done on the AlCCH
system. Chertihin et al. have studied this system experimen-
tally and theoretically.53 They found that the structure of
AlCCH is linear and that the isomer CCAlH is higher in
energy. We have reexamined this system by optimizing
different isomers with PBE0/MG3. We found that the linear
AlCCH system is the minimum-energy structure, with a
ground electronic state of1Σ+. It is interesting to note that
the CCAlH systems (both singlet and triplet states) are saddle
points. We also examined bent systems andπ-bonded system
where the Al atom is bonded to the bridge site of the C-C
bond in the acetylene fragment. We also located stationary
points for nonlinear systems that had C2v and Cs symmetries.
The minimum-energy structures are shown in Figure 2, and
the results are summarized in Table 2. There is one structure
with Cs symmetry that is a minimum, and there is one C2v

structure with one imaginary frequency (labeled C2v-1i in

Table 1. Parameters in VGFP

i ni Ai Bi

1 0 -7.31691 × 10-2 2.25122
2 0 -1.06549 × 10-1 0.73006
3 0 -3.91007 × 10-2 0.01575
4 0 -4.08602 × 10-6 0.00434
5 1 -2.73705 × 10-3 0.20601
6 2 -1.95503 × 10-5 0.06858

Veff(r) ) ∑
l)0

L+1

Vl
eff(r) ∑

m ) -l

l

|lm〉〈lm| + Vpol (3)

Vpol ) -R
2

(1 - exp(-λr2))2

r4
(4)

VGFP) ∑
i)1

6

Air
ni exp(-Bir

2) (5)

Figure 1. The face centered cubic (1), hexagonally close
packed (2), and icosahedron (3).
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Table 2 and Figure 2) and one C2v structure with two
imaginary frequencies (labeled C2v-2i in Table 2 and Figure
2). The lowest energy nonlinear structure is the Cs structure,
and the C2v-1i structure is lower in energy than C2v-2i.

There have also been few theoretical or experimental
studies of either Al2H or Al2C. Chertihin et al.53 indicate
that the lowest-energy structure of Al2C is a bent structure
with C2v symmetry. We also found that the ground states of
Al2H or Al2C had C2v symmetry. Table 3 present the energies
of optimized Al2H and Al2C structures. We optimized
structures that have D∞h, C∞v, and C2v (see Figure 3)
symmetries. For Al2H we find that the lowest energy states
for the D∞h, C∞v, and C2v structures are doublets. The ground
state for Al2H (C2v symmetry) is the2B1 state, but the2A1

state is nearly degenerate with the2B1 state. The C2v

structures for Al2H are all true minima, but the lowest energy
C∞v state is a saddle point and the lowest energy D∞h structure
is a hilltop, i.e., a stationary point with two imaginary
frequencies. For Al2C, the lowest energy structures with C2v

and C∞v symmetries are both triplets, but the lowest energy
D∞h structure is a singlet. It is interesting to note that, as for

Al2H, the lowest energy D∞h, C∞v, and C2v structures of Al2C
are a hilltop, saddle point, and a true minimum, respectively.
In fact, all of the C2v structures are minima. However, unlike
Al2H, there are no nearly degenerate electronic states. We
will use the2B1 state of Al2H and the3B2 state of Al2C in
our training set.

The Al2O system has been studied more thoroughly.54-59

In all of the Al2O studies, the lowest energy structure has
been a linear (AlOAl) molecule with D∞h symmetry; the D∞h

structure, because of symmetry, has one independent bond
length (the Al-O bond). In fact, this structure is significantly
more stable than the other structures. Table 3 presents the
optimized Al2O structures. The lowest-energy structure with
C2v symmetry is a triplet (3B2). The Al2O systems also show
no nearly degenerate electronic states, unlike the Al2H system
that has nearly degenerate electronic states (2B1 and2A1). In
our training set, however, we have used the Al2O molecule
with C2v symmetry instead of the D∞h structure. This was
done because we will ultimately be using this data set to
parametrize a new ECP and valence basis set. The C2v

structure has an additional Al-Al bond that is not present
in the D∞h structure. All of the data that was used in the
heteronuclear set are in the last columns of Tables 4 and 5.
The other columns in Tables 4 and 5 will be explained in
sections 6, and those in Table 5 will be explained in sections
4, 5, and 6.

3.3. Optimization Test Set.The test set that was used
for optimizing our ECP method contains the PBE0/MG3

Figure 2. The AlCCH structures. The energetics are reported
in Table 2 and are labeled as AlCCH(linear) (1), CCAlH(linear)
(2), AlCCH(C2v-2i) (3), AlCCH(C2v-1i) (4), and AlCCH(Cs) (5).

Table 2. De Values (in eV) from All-Electron PBE0/MG3
Calculations for the AlCCH Structures Shown in Figure 1

De

AlCCH(linear)a

1Σ+ 16.64
3Π 15.26
3Σ+ 10.92

CCAlH(linear)
1Σ+ 14.24
3Π 11.92
3Σ+ 6.04

AlCCH(Cs)
1A′ 15.94
3A′ 14.57

AlCCH(C2v-1i)
1A1 15.06
3B2 12.61

AlCCH(C2v-2i)
1A1 14.14
3B2 12.41

a The 1Σ+ state is used in the heteronuclear and small molecule
test sets.

Table 3. De Values (in eV) for the Al2X (X ) H, C, O)
Molecules that Are Shown in Figure 3a

Al2Hb Al2Cc Al2Od

state De state De state De

D∞h
2Π 3.90 1Σg

+ 6.12 1Σg
+ 10.63

3Σu
+ 5.87 3Πu 7.42

5Σg
+ 4.21 1Πu 7.03

C∞v
2Π 4.18 3Σ 4.57 1Σ 7.15
4Σ 3.74 5Π 4.29 3Σ 6.08
2Σ 3.33 1Π 4.10 1Π 5.83

1Σ 3.91
C2v

2B1 4.51 3B2 6.95 3B2 8.02
2A1 4.46 1A1 6.40 1B2 7.67
4B1 2.87 5A2 5.38 3A2 7.24
4A2 2.76 3A1 5.14

a Calculated by the all-electron PBE0/MG3 method. b The C2v (2B1)
state is used in the heteronuclear and small molecule test set. c The
C2v (3B2) state is used in the heteronuclear and small molecule test
set. d The C2v (3B2) state is used in the heteronuclear and small
molecule test set.

Figure 3. The D∞h (1), C∞v (2), and C2v (3) structures of Al2X
(X ) H, C, and O).
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optimized geometries andDe values of AlH, AlC, AlO,
AlCCH, Al2H, Al2C, Al2O, and Al3, and theDe values of
the three Al13s structures with bond lengths fixed at 2.8635
Å. The structural isomers and electronic states of the
molecules are the same ones that are used in the hetero-
nuclear and homonuclear test sets.

3.4. Al13 Test Set.The Al13 test set was constructed to
further test the accuracy of the new ECP method. We
optimized the geometry and calculated the value ofDe for
FCC, HCP, and icosahedral Al13 with PBE0/MG3. The Al13

test data obtained this way is in the fourth row of Table 6;
the other data in this table will be explained in section 6.

The optimum bond lengths of the FCC, HCP, and
icosahedral structures are all shorter than the bulk bond length
(see Table 6). The minimum energy structure is a Jahn-
Teller distorted icosahedron. From one point of view, it
would have been preferable to include the Al13 data in the
optimization procedure, but the optimization procedure

(described below) involves repeated evaluation of the test
set, and calculating gradients of Al13 would have significantly
increased the time required to optimize the parameters. From

Table 4. De Values (in eV) for the Homonuclear and Heteronuclear Data Set Calculated with All-Electron PBE0/MG3 and
with Valence-Electron PBE0/MSMG3/6-311+G(d,p) and PBE0/MEC/6-311+G(d*,p) Methodsf

MSMG3/6-311+G(d,p)a MEC/6-311+G(d*,p)b MG3c

Al2 1.49 1.54 1.55
Al3 3.79 3.83 3.86
AlH 2.97 2.98 2.99
AlC 3.48 3.52 3.55
AlO 4.94 5.04 5.08
AlCCH 16.51 16.57 16.64
Al2H 4.41 4.44 4.51
Al2C 6.87 6.89 6.95
Al2O (C2v triplet) 7.80 7.94 8.02
Al13(FCC) 31.13 30.82 30.74
Al13(HCP) 31.74 31.49 31.43
Al13(icosahedron) 32.97 32.42 32.55
MUEd 0.18 0.06
timee 747 473 4.3 × 106

a All-electron with 6-311+G(d,p) for H, C, and O and valence-electron with MSMG3 for Al. b All-electron with 6-311+G(d*,p) for H, C, and O
and valence-electron with MEC for Al. c The all-electron basis set MG3 was used for all atoms. (MG3 is identical to 6-311++G(3d2f,2dp,2p) for
element considered in this paper.). d Mean unsigned deviation from last column. e CPU time in seconds. f In the valence-electron calculations,
the basis H, C, and O is 6-311G+G(d,p) for MSMG3 and 6-311+G(d*,p) for MEC.

Table 5. Equilibrium Internuclear Distance, re (in Å), for the Homonuclear and Heteronuclear Test Set Calculated with
PBE0 and the MSMG3 and MEC Valence-Only Methods as Compared to Results Obtained with the All-Electron MG3 Basis
Set

MSMG3/6-311+G(d,p)a MEC/6-311+G(d*,p)b MG3c

Al2 2.754 2.750 2.730
Al3 2.508 2.513 2.507
AlH 1.662 1.673 1.664
AlC 1.964 1.970 1.964
AlO 1.620 1.621 1.617
Al-CCH 1.968 1.973 1.966
Al-AlH 2.479 2.479 2.479
AlAl-H 1.821 1.827 1.820
Al-AlC 2.798 2.786 2.792
AlAl-C 1.849 1.854 1.853
Al-AlO (C2v triplet) 2.551 2.522 2.527
AlAl-O 1.736 1.737 1.730
MUEd 0.006 0.007

a All-electron with 6-311+G(d,p) for H, C, and O and valence-electron with MSMG3 for Al. b All-electron with 6-311+G(d*,p) for H, C, and O
and valence-electron with MEC for Al. c The all-electron basis set MG3 was used for all atoms. (MG3 is identical to 6-311++G(3d2f,2dp,2p).).
d Mean unsigned deviation from all-electron results.

Table 6. De (in eV) and re (in Å) Values for the Optimized
PBE0 Calculations on the Al13 Structuresa

FCC HCP icosahedron MUE

De re De re De re De re

CEP-121G(d) 31.14 2.727 31.73 2.727 32.36 2.814 0.44 0.060

LanL2DZ(d) 30.44 2.738 31.05 2.739 31.55 2.817 1.17 0.068

LP-31G(d) 30.55 2.696 31.18 2.698 31.82 2.774 1.00 0.049

MEC 31.63 2.719 32.23 2.723 32.59 2.666 0.05 0.006

MG3 31.60 2.713 32.25 2.715 32.70 2.661

MSMG3 31.84 2.727 32.43 2.727 33.06 2.814 0.26 0.060

SECP(d) 30.66 2.728 31.25 2.730 31.71 2.811 0.98 0.060

SHC(d) 30.28 2.712 30.90 2.756 31.14 2.838 1.41 0.073
a The MG3 row contains all-electron calculations, and the other

rows contain valence-only calculations and their mean unsigned
deviation from the MG3 row.
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another point of view though, using these data as a test
without including them in the training set provides a useful
check on our methodology. The Al13 test set is especially
important because Al13 is the smallest Al cluster in which
any atom has the bulk coordination number of 12. In
particular, the central atom, which participates in 12 of the
36 bonds of FCC Al13, has this coordination number. It is
important to test whether the effective core potential and basis
set remain valid not only for binding energies but also for
bond lengths for systems with this high coordination number.

3.5. Small Molecule Test Set.We have found PBE0 to
be the most accurate HDFT method for pure Al compounds;18

however, PBE0 is not necessarily the best method for other
systems, such as hydrocarbons.60,61 Since PBE0 might not
be the best method for all interesting systems, we will use
the small-molecule test set to test the accuracy of the MEC
method with other DFT and HDFT methods and compare
how well it does with competing EC methods. The small
molecule test set includes the atomization energies and bond
lengths of Al2, Al3, AlH, AlC, AlO, AlCCH, Al 2H, Al2C,
and Al2O. The DFT methods that will be used are the
Becke88-Lee-Yang-Wang model (BLYP),62,63 modified-
Perdew-Wang-Perdew-Wang-1991 model (mPWPW91),27

PBE;64 the HDFT methods that will be used are the Becke88
3-parameter-Lee-Yang-Wang model (B3LYP)65,66and modi-
fied-Perdew-Wang 1-parameter-Perdew-Wang-1991 model
(mPW1PW91);27 and the meta DFT methods that will be
used are the 1-parameter Becke88-Becke95 (B1B95)67 and
a recent 1-parameter model for kinetics (BB1K).68

3.6. AlX Test Set.We also wanted to test how well the
MEC method does with elements that are not present in the
training set. The AlX test set contains the dissociation
energies for AlX compounds whereX ) Li, Be, B, N, C, O,
and F. We used the electronic states determined by Gustev
et al.52 The dissociation energies were calculated with the
PBE0 HDFT method and MG3 basis set.

4. Tests of Literature ECPs and C, H, and O
Basis Sets
We first tested how well the currently available EC methods
do for the homonuclear test set; the results are given in Table
7. Each EC method consists of an ECP and a valence basis
set. Some of the valence basis sets that were developed for
the EC methods haved functions. The SHC and CEP
methods use the same exponent for thed functions (0.25).1

The LanL2DZ basis set uses a different exponent for thed
functions (0.19).69 To our knowledge, there are nod functions
for the SRP or SECP, so we have also examined all of the
EC methods with the standard exponents ford functions
(0.325) for Al.36 The standardd functions were used as both
Cartesiand functions (6D) and sphericald functions (5D).
This was done because some of the C, H, and O basis sets
use the 6D formalism and some used the 5D formalism. The
important result is that the choice between using 5D or 6D
functions does not have a significant effect on the results.
The diffuse functions that we have used are the standard
diffuse functions (thes andp exponents are both 0.0318)47

and were used with thed function that had the smallest error
(except for SECP+VGFP, which uses nod functions).

The one EC method that shows unexpected behavior in
Table 7 is the SECP+VGFPEC method. This EC method has
the smallest MUE for both atomization energies and bond
lengths when only ans andp valence-electron basis set was
used, but the errors more than double whend functions are
used. For the other ECPs, the inclusion ofd functions leads
to significant improvements in both atomization energies and
bond lengths.

The computational times reported in Table 7 are the CPU
times required for a single-point calculation of icosahedral
Al13 on a single-processor of an IBM Power4 supercomputer
with a 1.3 GHz Power4 processor. These times should not
be interpreted too closely because they depend on the number
of SCF iterations required, which can be increased or
decreased by using different initial guesses or different SCF
routines. Nevertheless they do provide a qualitative indication
of the cost that is needed to judge whether increasing the
basis set is worth the increased cost and whether including
d functions (except for SECP+VGFP) is worth the increased

Table 7. Mean Unsigned Error in De Values (in eV), re

Values (in Å), and CPU Times (in s) for the Homonuclear
Test Set with the Literature ECPs

no da literature 5Db 6Dc + diffused

CEP-31G
MUE(De) 2.78 0.63 0.79 0.80 0.63
MUE(re) 0.106 0.045 0.039 0.040 0.041
time 77 271 1635 261 680

CEP-121G
MUE(De) 2.30 0.57 0.65 0.64 0.56
MUE(re) 0.104 0.038 0.034 0.034 0.038
time 146 464 373 489 1465

LanL2DZ
MUE(De) 2.95 0.68 0.65 0.66 0.63
MUE(re) 0.102 0.028 0.034 0.033 0.043
time 72 160 393 417 1610

LP-31G
MUE(De) 2.82 1.04 0.78 0.77 0.71
MUE(re) 0.071 0.006 0.006 0.005 0.004
time 70 209 209 196 540

SECP
MUE(De) 2.33 0.32 0.30 0.22
MUE(re) 0.082 0.012 0.011 0.012
time 84 328 286 801

SECP+VGFP

MUE(De) 1.36 3.20 3.11 1.59
MUE(re) 0.007 0.077 0.076 0.013
time 87 328 335 260

SHC
MUE(De) 2.82 0.52 0.74 0.77 0.43
MUE(re) 0.169 0.057 0.053 0.046 0.050
time 71 291 258 255 471

SRP
MUE(De) 2.67 0.58 0.58 0.44
MUE(re) 0.101 0.028 0.028 0.023
time 72 719 622 844

a No diffuse functions. b The d functions are 5D. c The d functions
are 6D. d Best of the previous four columns, augmented by diffuse
functions.
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computational effort. In general, the addition of diffuse
functions did not lead to significant improvements in either
atomization energies or bond lengths. The inclusion of diffuse
functions, however, did lead to significant increases in the
computational time.

The main conclusions drawn from Table 7 is that the SECP
method does best for energies, and the LP-31G method does
best for bond distances. Note that these are the fifth and
second least expensive of the eight methods studied.

We turn next to the heteronuclear test set. For this test set
we tested the literature EC methods for Al with all-electron
basis sets for H, C, and O. The basis sets that we tested
were as follows: (a) double-ú, polarized valence double-ú,
and polarized augmented double-ú: 6-31G,70 6-31G(d),70,71

6-31+G(d),70-72 6-31G(d,p),70,716-31+G(d,p),70-72 6-31++G-
(d,p);70-72 and (b) triple-ú, polarized valence triple-ú, and
polarized augmented triple-ú: 6-311G,73 6-311G(d),72,73

6-311+G(d),72,73 6-311G(d,p),73 6-311+G(d,p),72,73 and
6-311++G(d,p).72,73 The double-ú-type basis sets and the
triple-ú-type basis sets use spherical harmonic sets of fived
basis functions. We did not reexamine all of the different
permutations of Al valence basis sets, but instead, for each
ECP, we used the one with the smallest errors in Table 7.
For CEP, we used the triple-ú basis set with the literatured
functions. We used the standardd functions for the LanL2DZ,
LP-31G, SECP, SHC, SRP, and SECP potentials. We did
not use the SECP+VGFP potential because of its poor
performance. With these explanations, then, the methods used
for Al are referred to as CEP-121G(d), LanL2DZ(d), LP-
31G(d), SECP(d), SHC(d), and SHC(d). The results are in
Tables 8 and 9.

None of the H, C, and O basis sets is quite as large as
MG3. For H, C, and O the MG3 basis set is the same as
6-311G++G(2df,2p),35 and for Al it is 6-311+G(3d2f).35

Atoms heavier than Si, thes and p functions of the MG3
basis set differ from 6-311G.35

Tables 8 and 9 show that increasing the size of the basis
set on H, C, and O does not systematically improve the
results, but in general, the best H, C, and O basis sets have
both polarization functions and diffuse functions. The
polarization functions lowered the errors for both atomization
energies and bond lengths, whereas the diffuse functions
mainly lowered the errors for atomization energies. The LP-
31G(d) method has the lowest errors when no polarization
or diffuse functions are used on H, C, and O. The best
method for the heteronuclear test set using polarized or
polarized augmented basis sets for H, C, and O is 6-31G-
(d,p) and SECP(d) for Al. This is encouraging because the
SECP method was also the most accurate forDe in the
homonuclear test set.

5. New ECP Parameters and Basis Set
Exponents
5.1. MSMG3 Method. On the basis of the tests in section
4, we chose the SECP method for further improvement, and
we began improving it by defining it for all values ofl
(MSECP) as explained in section 2. Then we developed a
valence electron basis set by starting with MG3 basis
functions. We were able to obtain very good results for the
homonuclear and heteronuclear test sets with a (3s4p1d)
valence electron basis set for Al and various basis sets for
H, C, and O. We call this method MSMG3 (modified
Stuttgart semiempirical ECP with Al basis functions from
MG3). The MUE inDe andre (averaged now over both the
homonuclear and heteronuclear test sets) decreased from 0.25
to 0.18 eV and from 0.011 to 0.006 Å, respectively.

The main drawback of the MSMG3 method is that it is
computationally demanding because there are fourp func-
tions on Al. Therefore we tested whether the results can be
improved if the Al basis functions are further optimized. We
began by testing the sensitivity to the basis set exponents
and found that the energies and geometries could be most

Table 8. Mean Unsigned Error for De (in eV) and re (in Å) for the Heteronuclear Test Set with Literature ECP Methods with
d Functions and Various Double-ú Basis Sets for C, H, and O

6-31Ga 6-31G(d)a 6-31G(d,p)a 6-31+G(d)a 6-31+G(d,p)a 6-31++G(d,p)a

CEP-121G(d)
MUE(De) 0.34 0.37 0.32 0.26 0.25 0.26
MUE(re) 0.039 0.039 0.039 0.032 0.031 0.031

LanL2DZ(d)
MUE(De) 0.39 0.27 0.19 0.30 0.29 0.31
MUE(re) 0.050 0.037 0.038 0.040 0.039 0.039

LP-31G(d)
MUE(De) 0.21 0.26 0.24 0.28 0.19 0.26
MUE(re) 0.025 0.034 0.033 0.032 0.032 0.031

SECP(d)
MUE(De) 0.28 0.17 0.16 0.18 0.17 0.19
MUE(re) 0.017 0.007 0.007 0.010 0.009 0.009

SHC(d)
MUE(De) 0.36 0.26 0.24 0.27 0.25 0.27
MUE(re) 0.053 0.042 0.041 0.045 0.045 0.045

SRP(d)
MUE(De) 0.30 0.19 0.23 0.20 0.18 0.20
MUE(re) 0.024 0.014 0.013 0.016 0.016 0.016

a Literature exponents.
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readily improved by varying the tightest and most diffuses
andp basis functions and/or thed function. The errors for
the compounds containing oxygen were much larger than
the errors for the C and H compounds, and for this critical
case we found that varying thed function on O leads to
systematic improvements, whereas varying the diffuse func-
tions on O did not lead improvements for compounds with
O. This will be discussed in greater detail in section 6.

To take advantage of the possible improvements noted in
the previous paragraph, we optimized a new basis set for Al
and a new ECP. We did not want to develop a new ECP
from scratch, so instead we took a linear combination of two
of the already defined ECPs

where X stands for either CEP, LanL2DZ, LP, and SHC and
H-X-MSECP stands for hybrid X-MSECP. After some initial
trials we found that a combination of the CEP and MSECP
potentials led to the most improvement inDe andre for both
the homonuclear and heteronuclear test sets. We also tried
using different linear combinations that used different values
of c for the various l-components but found that the
improvement obtainable in that way was marginal.

5.2. Optimization Procedure. We optimized the Al
valence-electron basis set, thed function for O, andc in eq
6 with a microgenetic algorithm (µGA), which has been
described elsewhere.74-76 Briefly stated, theµGA optimizes
a set of parameters by maximizing a fitness function. For
this paper, the fitness function is

where MUE(De) is the mean unsigned error in theDe, G is
the root-mean-square of the gradients calculated with the EC
method at the geometries of the PBE0/MG3 optimized
molecules,a ) 1 eV, andb ) 2 eV/Å, andf is the unitless

fitness function. The evaluation off involves computing the
dissociation energies for all of the molecules in the optimiza-
tion test set and the gradients of the PBE0/MG3 optimized
geometries in the optimization test set. This strategy allows
us to parametrize against geometries without having to do
an expensive geometry optimization at each step. The final
parameters define what we call the MEC method, and they
are given in Table 10. The parametrization was done with
the 6-311++G(d,p) basis set for C, H, and O, except that
the d function was also optimized on O. The optimizedd
function on O is 0.63924 and may be compared to the
standard one (in 6-311++G(d,p)) of 1.292. Any basis set
that uses the new value of the oxygend exponent instead of
the standard value will be denotedd*; the d exponent for C
is not changed. The heteroatom basis set will often be
explicitly stated after the EC method. For example, PBE0/
MEC/6-311+G(d*,p) means that the PBE0 HDFT method
was used with the MEC method for Al atoms, and the
6-311+G(d*,p) basis set was used for non-Al atoms.

6. Results and Discussion
All of the calculations in this paper were done with either
GAUSSIAN9845 or GAUSSIAN03,46 except for the Al13

geometry optimizations which were done with NWCHEM
version 4.5.77 As mentioned in section 5, the method that
we have developed (as specified in Table 10) is called the
MEC (Minnesota effective core) method. The results ob-
tained with the MEC method are given in Tables 4-6 and
11.

The MUE in De and re for both the homonuclear and
heteronuclear test set with the PBE0/MEC method are given

Table 9. Mean Unsigned Error for De (in eV) and re (in Å) for the Heteronuclear Test Set Calculated with the PBE0 Method
and Literature ECP Methods with d Functions and Various Triple-ú Basis Sets for C, H, and O

6-311Ga 6-311G(d)a 6-311G(d,p)a 6-311+G(d)a 6-311+G(d,p)a 6-311++G(d,p)a

CEP-121G(d)
MUE(De) 0.38 0.30 0.28 0.29 0.32 0.27
MUE(re) 0.041 0.034 0.032 0.035 0.033 0.033

LanL2DZ(d)
MUE(De) 0.42 0.34 0.32 0.33 0.31 0.31
MUE(re) 0.051 0.041 0.040 0.042 0.040 0.041

LP-31G(d)
MUE(De) 0.21 0.24 0.22 0.26 0.32 0.24
MUE(re) 0.024 0.031 0.030 0.030 0.030 0.030

SECP(d)
MUE(De) 0.31 0.22 0.20 0.21 0.18 0.19
MUE(re) 0.018 0.011 0.010 0.011 0.010 0.010

SHC(d)
MUE(De) 0.39 0.30 0.28 0.29 0.27 0.27
MUE(re) 0.054 0.046 0.045 0.047 0.046 0.046

SRP(d)
MUE(De) 0.31 0.23 0.21 0.21 0.20 0.20
MUE(re) 0.024 0.017 0.017 0.017 0.017 0.017
a Literature exponents.

VH-X-MSECP) cVX + (1 - c)VMSECP (6)

f ) -(1aMUE(De) + 1
b
G) (7)

Table 10. Parameters for the MEC Method

s exponent p exponent d exponent c

Al 0.75752 1.94530 0.45580 0.461
0.20680 0.20064
0.08507 0.07073
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in Tables 4 and 5, respectfully. It can be seen that the MUE
for De for both the heteronuclear test sets and homonuclear
test sets is 0.06, which is 0.12 eV lower than PBE0/MSMG3,
and it is 0.19 eV lower than the most accurate literature
potential. The MUE inre (for the heteronuclear and homo-
nuclear test sets) is 0.001 Å larger with PBE0/MEC than
with PBE0/MSMG3, but the MUE inre for PBE0/MEC is
0.005 Å lower than the most accurate literature potential. In
another test of the PBE0/MEC method, given in Table 6,
the MUE inDe for the Al13 test set is 0.04 eV, and the error
in bond lengths for the Al13 test set is 0.006 Å.

As described above, Table 5 involves tests of the MEC
model with the recommended 6-311+G(d*,p) basis for H,
C, and O. We also tested the MEC model with other basis
sets for H, C, and O, and the results are given in Table 11.
We found that the 6-311+G(d*,p) and 6-311++G(d*,p)
basis sets give the best results forDe and re, and the mean
unsigned errors for both of these basis sets are 0.05 eV and
0.005 Å, respectively. Removing the diffuse functions on
C, H, and O altogether does not lead to a significant increase
in errors for the heteronuclear test set. For example, the MUE
in De and re with the 6-311G(d,p) basis set is 0.08 eV and
0.007 Å, respectively.

An issue that requires special discussion is that the
d-function for O was reoptimized for use in conjunction with
the MEC basis set. The standard value of the oxygend
exponent in the 6-311G(d) or 6-311+G(d) basis set is 1.292,
and the standard value in the 6-31G(d) or 6-31+G(d) basis
set is 0.800, whereas the recommended value of thed
exponent for use with the MEC is 0.63924; this is denoted
d*. This does not mean that the MEC is inappropriate for
general use, but instead it indicates a deficiency in the
6-311+G(d) basis set for O. The MUEs in dissociation
energies and bond lengths for AlO and Al2O calculated with
PBE0/MEC/MG3 (the MG3 basis set for O is 6-311+G-
(2df)) are 0.06 eV and 0.003 Å, respectively, but these MUEs
are 0.18 eV and 0.006 Å, respectively, if the dissociation
energies and bond lengths are calculated with PBE0/MEC/
6-311+G(d). In contrast, the errors for the dissociation
energies and bond lengths are 0.06 eV and 0.003 Å,

respectively, using PBE0/MEC/6-311+G(d*). Thus, the
reoptimizatin of thed-function does not cancel errors in the
Al potential, but rather it corrects deficiencies in the O basis
set when it is reduced from a 2df polarization level (for which
thed exponents are 2.584 and 0.646) to a singled function.
Interestingly, the standardd exponents for the 6-311+G-

Table 11. Mean Unsigned Error for De (in eV) and re (in
Å) for the Heteronuclear Test Set Calculated with PBE0
and the MEC Valence-Electron Method for Al and Various
All-Electron Basis Sets for C, H, and O

MUE(De) MUE(re)

6-31Ga 0.20 0.009
6-31G(d*)a 0.09 0.006
6-31G(d*,p)a 0.08 0.006
6-31+G(d*)a 0.08 0.006
6-31+G(d*,p)a 0.06 0.006
6-31++G(d*,p)a 0.07 0.006
6-311Ga 0.22 0.009
6-311G(d*)a 0.10 0.007
6-311G(d*,p)a 0.08 0.007
6-311+G(d*)a 0.08 0.006
6-311+G(d*,p)a 0.05 0.005
6-311++G(d*,p)a 0.05 0.005

a The d-function used for O is 0.63924 (see Table 14), and the
remaining functions are unchanged from their standard values.

Table 12. Calculated Dissociation Energies for the AlX
Training Set and MUEs for Various Basis Sets

non-Al basis AlLi AlBe AlB AlN AlC AlO AlF MUE

6-31G(d)a 0.88 0.80 2.17 2.45 3.48 4.93 6.72 0.07
6-31+G(d)a 0.89 0.81 2.14 2.54 3.50 5.02 6.79 0.03
6-311G(d)a 0.90 0.81 2.14 2.46 3.49 4.87 6.59 0.10
6-311+G(d)a 0.91 0.83 2.16 2.52 3.52 4.94 6.64 0.07
6-31G(2d)b 0.89 0.83 2.19 2.50 3.53 4.96 6.70 0.07
6-31+G(2d)b 0.89 0.84 2.18 2.59 3.56 5.08 6.76 0.03
6-311G(2d)b 0.90 0.83 2.17 2.52 3.53 4.97 6.69 0.06
6-311+G(2d)b 0.91 0.85 2.19 2.59 3.56 5.07 6.74 0.04
6-31G(1d)c 0.89 0.82 2.19 2.49 3.54 4.90 6.71 0.07
6-31+G(1d)c 0.89 0.83 2.18 2.58 3.57 5.03 6.77 0.03
6-311G(1d)c 0.90 0.82 2.17 2.51 3.54 4.91 6.70 0.07
6-311+G(1d)c 0.91 0.84 2.19 2.58 3.57 5.02 6.75 0.04
6-311+G(d*)d 0.91 0.83 2.16 2.52 3.52 5.04 6.64 0.06

a The exponents are all unchanged from those defined in the
literature (see Table 14). b The exponents used in the d-functions for
this basis set are the same ones used in the MG3 basis set (see
Table 14). c The exponent used in the d-functions for this basis set
are the same as the most diffuse d-exponent used in the MG3 basis
set (see Table 14). d The exponent used in the d-functions used for
O is 0.63924, and the remaining exponents are unchanged from their
standard values.

Table 13. Calculated Dissociation Energies for the AlX
Training Set and MUEs for Various Basis Sets and EC
Methods

non-Al basis AlLi AlBe AlB AlN AlC AlO AlF MUE

CEP-121G(d)
6-311G(d)a 0.87 0.72 1.92 2.05 3.20 4.27 6.08 0.39
6-311+G(d)a 0.88 0.72 1.92 2.10 3.20 4.34 6.15 0.36
6-311G(2d)b 0.88 0.73 1.95 2.23 3.30 4.56 6.32 0.27
6-311+G(2d)b 0.88 0.73 1.96 2.28 3.31 4.61 6.36 0.25
6-311G(1d)c 0.88 0.72 1.95 2.23 3.31 4.57 6.33 0.27
6-311+G(1d)c 0.88 0.72 1.96 2.27 3.32 4.61 6.37 0.24

LanL2DZ(d)
6-311G(d)a 0.88 0.73 1.94 2.08 3.23 4.32 6.10 0.37
6-311+G(d)a 0.88 0.73 1.94 2.14 3.24 4.40 6.18 0.34
6-311G(2d)b 0.88 0.75 1.99 2.24 3.33 4.57 6.33 0.25
6-311+G(2d)b 0.89 0.74 1.99 2.30 3.34 4.64 6.39 0.23
6-311G(1d)c 0.88 0.73 1.99 2.23 3.34 4.58 6.34 0.25
6-311+G(1d)c 0.88 0.74 1.99 2.29 3.35 4.65 6.41 0.22

SECP(d)
6-311G(d)a 0.88 0.70 1.92 2.05 3.20 4.27 6.08 0.39
6-311+G(d)a 0.88 0.72 1.92 2.10 3.21 4.34 6.15 0.36
6-311G(2d)b 0.88 0.73 1.97 2.23 3.31 4.54 6.32 0.27
6-311+G(2d)b 0.88 0.73 1.96 2.28 3.32 4.60 6.37 0.24
6-311G(1d)c 0.88 0.72 1.97 2.23 3.32 4.55 6.33 0.26
6-311+G(1d)c 0.88 0.73 1.96 2.27 3.33 4.61 6.38 0.24

a The exponents are all unchanged from those defined in the
literature (see Table 14). b The exponents used in the d-functions for
this basis set are the same ones used in the MG3 basis set (see
Table 14). c The exponent used in the d-functions for this basis set
are the same as the most diffuse d-exponent used in the MG3 basis
set (see Table 14).
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(2df) basis set for O, namely 2.584 and 0.646, are similar to
the standard exponents for the cc-pVTZ78 basis set for O,
namely 2.314 and 0.645. Since the d* function has an
exponent of 0.63924, we conclude that when one combines
a polarized triple-ú valence all-electron basis set on O with
a core potential on Al, it is more important to polarize the
diffuse part of the valence triple-ú space than the tighter part.

We have used the AlX test set to test the MEC method
with elements that were not included in the parametrization
(specifically Li, Be, B, N, and F). Table 12 gives the
dissociation energies and MUEs calculated with the PBE0
HDFT method and the MEC method for Al and 13 different
basis sets for B, Be, C, F, Li, N, and O atoms. The errors
are calculated by comparing to all-electron PBE0/MG3
dissociation energies. The 13 different basis sets used are
6-31G(d), 6-31+G(d), 6-311G(d), 6-311+G(d), 6-31G(2d),
6-31+G(2d), 6-311G(2d), 6-311+G(2d), 6-31G(1d), 6-31+G-
(1d), 6-311G(1d), 6-311+G(1d), and 6-311+G(d*,p), where
(d*) is the same as (d) except for O where the exponent is
changed to 0.63924. Thesandp functions used in the 6-31G-
(2d) and 6-31G(1d), 6-31+G(2d) and 6-31+G(1d), 6-311G-
(2d) and 6-311G(1d), and 6-311+G(2d) and 6-311+G(1d),
are the same as those used in the 6-31G(d), 6-31+G(d),
6-311G(d), and 6-311+G(d) basis sets, respectively. The
d-functions used in the 6-31G(2d), 6-31+G(2d), 6-311G-
(2d), and 6-311+G(2d) are the same as the ones used in the
MG3 basis set. Thed-functions used in the 6-31G(1d),
6-31+G(1d), 6-311G(1d), and 6-311+G(1d) basis sets are
the same as the most diffused-function used in the MG3
basis set basis set. Thed-functions are presented in Table
14. Comparison of rows 11 and 12 to rows 3 and 4 in Table
12 shows that errors are significantly lower if one polarizes

the diffuse part of the valence triple-ú space than the tighter
part. The MUE if the 6-311+G(1d) basis set is used is 0.04
eV. Thus, we conclude that the MEC method can be used
with all of the first-row elements if the 6-311+G(1d) basis
set is used.

We did some further tests to see if the need for diffused
functions is specific to the MEC method or is a more general
feature of Al EC methods. We have calculated atomization
energies for the molecules in the AlX training set using the
PBE0 HDFT method and 6 different heteronuclear basis sets
(6-311G(d), 6-311+G(d), 6-311G(2d), 6-311+G(2d), 6-311G-
(1d), and 6-311+G(1d)) and 3 different EC methods for Al
(CEP-121G(d), LanL2DZ(d), SECP(d)) and calculated the
MUEs relative to PBE0/MG3 results. The results are in Table
13. It can be seen that the good performance of (1d) basis
sets relative to (d) sets is not specific to the MEC method
but is a much more general trend. For atoms bonding to Al,
the errors are much lower if the diffuse part of valence space
is polarized rather than using the usual (d) exponent.

Another test was to see how well the 6-311++G(d*,p)
basis does for compounds that contain no Al atoms. We
optimized the geometries and calculated the dissociation
energies of BeO, CH3OCH3, CH3OH, H2CO, H2O, and LiO
within all-electron calculations with the PBE0/6-311+G(d,p),
PBE0/6-311+G(d*,p), and PBE0/MG3. The MUEs, relative
to PBE0/MG3, for the Be-O, C-O, Li-O, and O-H bond
lengths with PBE0/6-311+G(d*,p) and PBE0/6-311+G(d,p)
are 0.006 Å and 0.003 Å, respectively, and the MUEs for
the atomization energies for PBE0/6-311+G(d*,p) and
PBE0/6-311+G(d,p) are both 0.11 eV. The bond lengths for
Be, C, H, Li, and O compounds are marginally less accurate
if PBE0/6-311+G(d*,p) is used in place of the PBE0/6-
311+G(d,p) basis set, whereas the errors for atomization
energies are equal. However, Table 15 shows that the bond
lengths and atomization energies are significantly more
accurate if PBE0/6-311+G(d*,p) is used instead of PBE0/
6-311+G(d,p) for Al containing compounds.

We also used the small molecule test set to test the
accuracy of the MEC method and literature EC methods with
functionals other than PBE0. The tests include not only
hybrid functionals such as PBE0 (in particular, B3LYP65,66

and mPW1PW9127) but also pure GGA functionals (BL-
YP,62,63 mPWPW91,27 and PBE64) and hybrid meta func-
tionals (B1B9567 and BB1K68). The MUEs for atomization
energies and bond lengths are given in Table 15. The errors
are the unsigned differences between the values computed
with the all-electron MG3 basis set and those computed with
the EC method. For the MEC method, the average MUEs
for atomization energies and bond lengths for all of the
functionals in Table 15 are 0.04 eV and 0.009 Å, respec-
tively. The most accurate literature EC method for all of the
functionals is SECP(d), which has an average MUE of 0.16
eV for atomization energies and 0.013 Å for bond lengths.
The results show that the MEC method is useful not only
for the PBE0 density functional but also that it can be used
advantageously with more general electronic structure meth-
ods.

Table 14. Exponents for the d-Polarization Functions
Used in the Non-Al Basis Sets

d1 d2

Li 6-31G(d)a 0.20000
6-311G(d)a 0.20000
MG3a 0.10000 0.400

Be 6-31G(d)a 0.40000
6-311G(d)a 0.25500
MG3a 0.12800 0.510

B 6-31G(d)a 0.60000
6-311G(d)a 0.40100
MG3a 0.20100 0.802

N 6-31G(d)a 0.80000
6-311G(d)a 0.91300
MG3a 0.45700 1.826

C 6-31G(d)a 0.80000
6-311G(d)a 0.62600
MG3a 0.31300 1.252

O 6-31G(d)a 0.80000
6-311G(d)a 1.29200
6-311G(d*)b 0.63924
6-311+G(d*)b 0.63924
MG3a 0.64600 2.584

F 6-31G(d)a 0.80000
6-311G(d)a 1.75000
MG3a 0.87500 3.500

a Literature exponents. b Optimized in this work.

50 J. Chem. Theory Comput., Vol. 1, No. 1, 2005 Schultz and Truhlar



7. Concluding Remarks

A summary of the improvements obtained in this paper is
given in Table 16. Table 16 shows that the best literature
EC method is considerably better than the average literature
method (factor 1.5-3 for bond energies and factor of 2-4
for bond lengths). However, our new effective core method
for Al gives another factor of about 3 improvement in bond
energies and a slight (on average) improvement in bond
lengths.

8. Summary

We have developed a new effective core method for Al for
use with electronic structure methods. The quality of a
calculation with this EC method is comparable to a calcula-
tion with the high-quality, all-electron MG3 basis set.
(Note: for elements in this paper, MG330-36 is identical to
6-311++G(3d2f,2df,2p)). With the new MEC method, the
mean unsigned errors, where the error is defined as the
difference between values computed with the MG3 basis set

Table 15. Mean Unsigned Errors for a Variety of Density Functionals, Relative to the Results Obtained with the Same
Functional with the MG3 Basis Set, in De (in eV) and re (in Å) for the Small-Molecule Test Set

B1B95a B3LYP BB1K BLYP mPW1PW91b mPWPW91c PBE PBE0d av

De

CEP-121G(d)/6-311+G(d,p)e 0.22 0.18 0.24 0.15 0.23 0.20 0.20 0.21 0.20
LanL2DZ(d)/6-311+G(d,p)e 0.18 0.13 0.20 0.09 0.17 0.14 0.15 0.28 0.17
MEC/6-311+G(d,p)e 0.06 0.04 0.09 0.05 0.06 0.02 0.04 0.07 0.06
MEC/6-311+G(d*,p)f 0.03 0.05 0.06 0.07 0.04 0.01 0.02 0.04 0.04
SECP(d)/6-311+G(d,p)e 0.16 0.11 0.18 0.09 0.15 0.13 0.14 0.19 0.16

re

bond lengths
CEP-121G(d)/6-311+G(d,p)e 0.042 0.026 0.043 0.022 0.034 0.031 0.033 0.034 0.033
LanL2DZ(d)/6-311+G(d,p)e 0.029 0.014 0.031 0.012 0.022 0.020 0.021 0.038 0.023
MEC/6-311+G(d,p)e 0.013 0.008 0.013 0.010 0.007 0.007 0.007 0.007 0.009
MEC/6-311+G(d*,p)f 0.011 0.010 0.012 0.011 0.006 0.007 0.007 0.007 0.009
SECP(d)/6-311+G(d,p)e 0.017 0.009 0.018 0.009 0.010 0.009 0.010 0.019 0.013

a Note that we used the correct B1B95 functional with 28% Hartree-Fock exchange, not the incorrect functional present in ref 46. b Also-
called mPW1PW91 and mPW0. c Also-called mPWPW. d Also-called PBE1PBE. e The all-electron 6-311+G(d,p) basis set was used for H, C,
and O. f The all-electron 6-311+G(d*,p) basis set was used for H, C, and O. The 6-311+G(d*,p) basis set is identical to the 6-311+G(d,p) basis
set except for the exponent used in the O polarization functions, which was optimized in this work (see text).

Table 16. Mean Unsigned Errors in PBE0 Values of De (in eV) and re (in Å)

quantity

De re

test set homo hetero Al13 homo hetero Al13

average literature 0.62a 0.26b 1.00c 0.024a 0.030b 0.053c

best literature 0.22d 0.16d 0.44e 0.012d 0.007d 0.060e

MEC/6-31G(d,p)f 0.07 0.10 0.05 0.013 0.001 0.006
MEC/6-31+G(d,p)f 0.07 0.07 0.05 0.013 0.008 0.006
MEC/6-311+G(d,p)f 0.07 0.09 0.05 0.013 0.006 0.006
MEC/6-31G(2dO,dC,p)g 0.07 0.08 0.05 0.013 0.006 0.006
MEC/6-31+G(2dO,dC,p)h 0.07 0.06 0.05 0.013 0.006 0.006
MEC/6-311+G(2dO,dC,p)i 0.07 0.05 0.05 0.013 0.005 0.006
MEC/6-31G(d*,p)g 0.07 0.08 0.05 0.013 0.006 0.006
MEC/6-31+G(d*,p)g 0.07 0.06 0.05 0.013 0.006 0.006
MEC/6-311+G(d*,p)g 0.07 0.05 0.05 0.013 0.005 0.006

a Average of eight methods in Table 7. b Average of 72 methods in Tables 8 and 9. c Average of 5 methods in Table 6. d SECP(d) for Al with
6-31G(d,p) for H, C, O. e CEP-121G(d) for Al. f The basis after the / is used for H, C, and O; the basis used for Al is the polarized triple-ú basis
set of the MEC method. The H, C, and O basis set is unchanged. g The basis after the / is used for H, C, and O; the basis used for Al is the
polarized triple-ú basis set of the MEC method. Two sets of d-polarization functions are used for O, one set of d-polarization functions are used
for C, and one set of p-polarization functions are used for H. The exponents for the O d-polarization functions are taken from the MG3 basis set,
and the polarization functions for the C and H polarization functions are taken from the 6-31G(d,p) basis sets. h The basis after the / is used for
H, C, and O; the basis used for Al is the polarized triple-ú basis set of the MEC method. Two sets of d-polarization functions are used for O, one
set of d-polarization functions are used for C, and one set of p-polarization functions are used for H. The exponents for the O d-polarization
functions are taken from the MG3 basis set and the polarization functions for the C and H polarization functions are taken from the 6-31+G(d,p)
basis sets. i The basis after the / is used for H, C, and O; the basis used for Al is the polarized triple-ú basis set of the MEC method. Two sets
of d-polarization functions are used for O, one set of d-polarization functions are used for C, and one set of p-polarization functions are used
for H. The exponents for the O d-polarization functions are taken from the MG3 basis set and the polarization functions for the C and H polarization
functions are taken from the 6-311+G(d,p) basis sets. g The basis after the / is used for H, C, and O; the basis used for Al is the polarized
triple-ú basis set of the MEC method. The 6-311+G(d*,p) basis set is identical to the 6-311+G(d,p) basis set except the for exponent used in
the O polarization functions, which was optimized in this work (see text).
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and the EC method, for dissociation energies and bond
lengths are 0.06 eV and 0.007 Å, respectively. This is a
significant improvement over previous EC methods, where
the best literature method has an MUE of 0.27 eV for
dissociation energies and 0.026 Å for bond lengths.

The basis set and EC can be obtained online at
comp.chem.umn.edu/basissets/basis.cgi.
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Abstract: We test a strategy for using block Hessians for transition state geometry optimizations.

The block Hessian matrix is constructed by mixing a small critical block of the accurate Hessian

for key atoms involved in bond breaking and forming with large noncritical blocks of the low-

level Hessian. The method is tested for transition state optimizations at the MC-QCISD/3 level

for five reactive systems: H + CH3OH, O + CH4, OH + CH4, NH2 + CH4, and H + C2H5OH.

When the entire low-level Hessian was used, significant oscillations were observed during the

optimizations for the first four systems, whereas the transition state for the last system was

optimized to a wrong structure. The block Hessian strategy efficiently removed these pathological

effects of using low-level Hessians, and therefore it provides a highly reliable method for

optimizing transition state structures with reduced computational cost. The method is very general,

and it is especially well suited for optimizing transition state structures and equilibrium structures

of large systems at very high levels of theory.

Use of molecular mechanics or electronic structure calcula-
tions to optimize molecular geometries or electronic structure
calculations to optimize saddle points is one of the most
common and important computational steps in modern
theoretical chemistry.1 The foundation algorithm for geom-
etry optimization is the iterative Newton-Raphson algo-
rithm;2 however, most optimizations are carried out with
simplified versions of this algorithm, which are often called
quasi-Newton methods. A serious impediment to using full
Newton-Raphson calculations is that they require a Hessian
at every iteration, and Hessians are expensive, especially for
the more reliable levels of electronic structure theory.
Furthermore, as system size increases the number of Hessian
elements increases as the square of the number (N) of atoms.

There are two main strategies in use to decrease the cost
of Hessian evaluations in geometry optimization. We assume
that one wants the geometry optimized at electronic structure
level L. One strategy would be to use approximate Hessians
at level L. For example, at a previous iteration one might
have computed an accurate level-L Hessian at geometryR.
Now the iterations have advanced the geometry toR′. One
can use gradient calculations at recent iterations to ap-
proximately update the Hessian toR′. A variation on this
first strategy is to use the accurate Hessian atR (without

updates) as an approximate Hessian atR′. The second
strategy is to use accurate Hessians at a lower levelL′. For
example one might use Hartree-Fock (HF) Hessians3 to
optimize a geometry at the higher level of quadratic
configuration interaction with single and double excitation4

(QCISD).
The purpose of this article is to consider a third general

strategy for minimizing the Hessian cost and to demonstrate
that it can be used successfully. The strategy consists of
blocking the Hessian matrix, as in Figure 1, and treating the
critical block or blocks at a high level and less critical blocks
at a lower level. For example, consider the reaction

If we label the acceptor oxygen atom, the transferred

Figure 1. The coordinates are divided into a critical (C) group
and a noncritical (N) group and the Hessian matrix is blocked
accordingly.

OH + CnH2n+2 f H2O + CnH2n+1 (R1)
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hydrogen atom, and the donor carbon atom as critical (C)
and all other atoms as noncritical (N), the number of elements
of the CC block is 81, the number of elements of CN and
NC blocks is 162n + 54, and the number of elements of the
NN block is 81n2 + 54n + 9. Thus if we need high-level
Hessians only for the blocks involving critical atoms (CC,
CN, and NC), we will have changed the quadratic scaling
to linear scaling. Already atn ) 8, the number of Hessian
elements to be evaluated at the high level is reduced by a
factor of 5. Furthermore, if we only need the high-level
Hessian for the CC block, the number of high-level Hessian
elements required is a constant irrespective of the system
size n. Thus if this strategy works (and the present paper
show that it does), one should be able to optimize much
larger structures at high (expensive) levels of electronic
structure theory. Thus this approach has the potential to
revolutionize computational strategies for electronic structure
calculations on large systems.

The strategy tested here is expected to be especially useful
for optimizations at very high levels where the Hessians are
usually evaluated by numerical differentiation of very
expensive gradients or energies. In such cases it is easy to
carry out numerical differentiation of any desired subset of
Hessians. For large systems one could imagine using
sophisticated labeling and blocking schemes to identify the
critical subset of Hessian elements. In this article, we will
use the simple scheme of Figure 1 where the CC block
consists of 3 Cartesian degrees of freedom for a donor atom,
3 for a transferred element, and 3 for an acceptor atom, and
high-level Hessians are only calculated for this 9× 9 critical
block.

Having chosen a 9× 9 critical block, we can, however,
achieve a further efficiency by a strategic choice of the origin

and the orientation of the molecule. When we use unblocked
Hessians and optimize a geometry, we can place the first
atom (A) at the origin (xA ) yA) zA) 0), the second atom
(B) on thex axis (yB ) zB ) 0), and the third atom (D) to lie
in the xy plane (zD ) 0). During the optimization these six
coordinates are held fixed, and only 3N - 6 coordinates vary.
In the blocked method, we can always number the acceptor,
donor, and transferred atom as the first three atoms. This
partitions the 9 Cartesian coordinates of these atoms into 6
fixed critical coordinates and 3 nonfixed critical coordinates
(these will be called the active coordinates). Since we do
not need gradients or Hessian elements for the fixed atoms,
this reduces the size of the CC block that needs to be
calculated to 3× 3. This new blocking is shown in Figure
2. To calculate the full 3N × 3N Hessian atR by forward
differentiation requires (in addition to a gradient atR) a total
of 3N additional gradients, each one displaced in one of the
coordinates. To calculate high-level Hessians for the 3× 3
critical block requires only 3 gradients in addition to the one
at R. In the implementation below, we calculate a new
Hessian every third step. Thus, on average, the number of
gradients required per step for calculating the Hessian is
decreased from 3N + 1 to 2.

Although the kind of strategy tested here has been
mentioned as a possible approach in a pedagogical article,5

and although theGaussian program6 allows numerical
estimation of certain elements of the Hessian in internal
coordinates, we know of no published examples of the kind
of treatment espoused here. Furthermore the advantages of
using this approach even with more straightforward and more
general Cartesian optimization do not seem to be recognized
by many current workers in the field. Therefore, in the

Figure 2. Another partition of the Hessian matrix where the size of the critical block is reduced from 9 × 9 to 3 × 3.
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present article, we present several examples showing the
power of the method.

In the first set of tests, the transition states for the following
reactions are considered:

We carried out transition state geometry optimizations for
the above four systems at the level of multicoefficient
quadratic configuration interaction with single and double
excitations, version 3 (MC-QCISD/3).7,8 The MC-QCISD
method belongs to the family of multicoefficient correlation
methods (MCCMs),7-11 which have been shown to be able
to provide accurate atomization energies, reaction barrier
heights, and transition state geometries at highly correlated
levels. From a practical point of view, MC-QCISD represents
the most accurate available method for which the compu-
tational effort12 of energy calculations scales asN6, where
N is the number of atoms in the system. (Methods with
steeper scaling are usually not affordable for studying
medium- to large-sized systems.) However, the method used
here is applicable to other levels12 of electronic structure
theory like MP2, MP4, QCISD, CCSD(T), etc. The MC-
QCISD total energy and gradients are composed of a linear
combination of several single-level components, i.e., HF/6-
31G(d), HF/MG3S, MP2/6-31G(d), MP2/MG3S, and QCISD/
6-31G(d).7 The MG3S13 basis set is identical to 6-311+G-
(2df,2p)14 for systems containing only first row elements.
In the current implementation15 where single-level calcula-
tions are carried out usingGaussian 98,6 the MC-QCISD
analytical gradient is available; however, the MC-QCISD
Hessian is obtained numerically due to the unavailability of
an analytical Hessian for the QCISD component.

We will test the new idea by comparing the use of a high-
level Hessian for a critical block to using the entire low-
level Hessian. For this purpose we use a very straightforward
optimization algorithm, in particular, the Newton-Raphson
method2 implemented in programMULTILEVEL .15 To reduce
the cost of calculating Hessians every Newton-Raphson
step, we apply two different approaches.

In the first approach,11 the Hessian matrix is calculated
every three Newton-Raphson steps and is kept frozen until
the next recalculated point. Whenever a Hessian recalculation
is requested, either an entire low-level Hessian (LH) at level
L or the blocked Hessian (BH, with the critical block at a
high-level and the rest at a low level) is provided.

In the second approach, we test whether the block Hessian
idea can be combined with Hessian update techniques to
further improve the efficiency of the method. In particular,
the LH or BH is only calculated at the first step and is
updated for later steps during the geometry optimization.
Because our strongest interest is transition structure search-
ing, we use the Davidon-Fletcher-Powell (DFP) Hessian
update scheme16 which does not preserve a positive definite

Hessian matrix. (Alternatively, one could use the improved
Powell formula of Bofill,17 which is probably the best update
method for transition states.)

In the present article, the low-levelL is taken as HF/6-
31G(d) or AM1. The former choice has been shown to be
good enough for carrying out multilevel optimizations for
small stable species.11

The block Hessian matrix is obtained by forward dif-
ferentiation of the analytical gradients for the Cartesian
coordinates of critical atoms. (The use of forward differences
saves a factor of 2 in computer time as compared to central
differentiations.) For atom transfer reactions, such as the
reactions tested in the present paper, by using the 9× 9
critical block scheme described above, this algorithm in-
volves 9 gradient calculations in total associated with 9 finite
displacements of each Cartesian coordinate of the active atom

whereE is the total electronic energy of the system;xi is ith
Cartesian coordinate of a row or column of the critical block;
gxi is the Cartesian gradient component corresponding to the
coordinatexi; and δx is a finite displacement. With the
particular choice of geometry specified in the 3× 3 critical
block scheme, the blocked method only requires 3 gradient
calculations to evaluate the high-level Hessian elements for
the 3 active coordinates. In the tests presented below, we
will apply the new method to a 9× 9 critical block scheme
and then repeat some of the calculations with the 3× 3
critical block scheme.

It is worthwhile to point out that the CN and NC blocks
of the Hessian matrix are also available by above numerical
differentiations of the analytical gradients. However, we
restrict the usage of high-level Hessian elements only to the
CC block throughout the present study. This strategy is
especially appealing for cases where analytical gradients are
also very expensive or even analytically unavailable; in the
latter case one could use a second order numerical dif-
ferentiation of the energies to obtain a fairly small critical
block of the accurate Hessian without calculating other
gradient components to as high a precision.

The initial geometries used in the optimizations were
obtained from three different levels of theory, i.e., HF/6-
31G(d), B3LYP/6-31G(d), and QCISD/MG3. The optimiza-
tion is considered to be complete if the maximum component
of the gradient is less than 10-4 hartree/bohr. Table 1 lists
key distances for bond breaking and forming in these initial
geometries compared to the fully optimized geometries at
the MC-QCISD/3 level.

We tabulate the energies and maximum gradients during
the optimization process for transition states of R2 and R3
in Tables 2 and 3. It is observed a large number of cases in
investigation hardly converged if the entire low-level Hessian
is used. The case starting with the HF/6-31G(d) geometry is
quickly converged using low-level Hessians; however, this
may be fortuitous. For converged cases, Tables 2 and 3
estimate the cost in terms of the number of gradient
calculations for the optimization. Among the six cases in

H + CH3OH f H2 + CH2OH (R2)

O + CH4 f OH + CH3 (R3)

OH + CH4 f H2O + CH3 (R4)

NH2 + CH4 f NH3 + CH3 (R5)

∂
2E

∂xi∂xj
)

gxi
|

xj+δx
- gxi

|
xj

δx
(i, j ) 1 - 9) (1)
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Tables 2 and 3, five of them display oscillations if the entire
low-level Hessian (LH) is used, but using the block Hessian
(BH) removes these oscillations in all cases. Although the
high-level Hessian (HH) works equally as well as the BH,
the cost of computing all the elements numerically makes it
unfeasible for systems of large size, which prevents applying
this approach to many interesting problems.

To evaluate the new BH method more systematically, we
apply a statistical approach. Combining three different initial
geometries, two levels of the low-level Hessian, and two

Hessian update schemes for reactions R2-R5, we have 48
cases in total. The numbers of converged cases have been
collected based on various conditions in Table 4, for both
the LH and the BH methods. The notationX/Y represents
that there areX cases successfully converged amongYcases
that satisfy the conditions described in the first column of
Table 4. If the entire low-level Hessian is used, only 11 of
the 48 cases converge within 30 iterations. It is encouraging
that the number of converged cases is significantly increased
to 29 when the block Hessian strategy is applied, which is
almost three times more robust compared to the method that
simply uses the low-level Hessian. Table 4 indicates that
the BH strategy outperforms the LH one over broad range
of reactions, initial geometries, levels of theory to calculate
the Hessian, and Hessian update schemes. In Table 5, we
collected the statistics for R2 and R3 with the 3× 3 critical
block version of the BH strategy (as shown in Figure 2).
Using the 3× 3 critical block further improves the efficiency
of the BH geometry optimization, and the stability of the
algorithm is not altered.

The above tests show that the quality of the critical block
of the Hessian matrix plays an important role in geometry
optimizations of transition state structures. The errors of using
low-level Hessian to approximate the high-level Hessian
sometimes can be so significant that the optimizations
oscillate wildly even if one starts from a geometry close to
the high-level saddle point, for example, the QCISD/MG3
geometry (see comparisons of key bond distances in Table
1). The oscillations of energies during the optimization are
not the only pathological behavior when the low-level
Hessian is used; the transition state can also be optimized to

Table 1. Breaking and Forming Bond Distances in Initial
Geometries Compared to Those in MC-QCISD/3 Optimized
Geometries for Reactions R2-R6

Ia IIb IIIc IVd

R2
C-H 1.351 1.302 1.316 1.307
H-H 0.959 1.011 0.969 0.976

R3
C-H 1.369 1.389 1.302 1.275
H-O 1.167 1.147 1.202 1.226

R4
C-H 1.313 1.274 1.227 1.194
H-O 1.200 1.238 1.285 1.320

R5
C-H 1.358 1.355 1.314 1.298
H-N 1.252 1.248 1.270 1.287

R6
C-H 1.340 1.268 nce 1.282
H-H 0.969 1.054 nce 1.000

a HF/6-31G(d) geometry. b B3LYP/6-31G(d) geometry. c QCISD/
MG3 geometry. d Optimized geometry at the MC-QCISD/3 level. e nc
denotes not calculated.

Table 2. Maximum Component of the Gradient (in au) for Transition State Optimization of H + CH3OH f H2 + CH2OH at
the MC-QCISD/3 Level Using Low-Level Hessians (LH), Block Hessians (BH, as Figure 1), and High-Level Hessians (HH)

Ia IIb IIIc

iteration LHd BHe HHf LH BH HH LH BH HH

0 1.6E-2 1.6E-2 1.6E-2 9.2E-3 9.1E-3 9.1E-3 5.0E-3 5.0E-3 5.0E-3
1 2.6E-3 2.9E-3 1.0E-2 3.5E-3 1.9E-3 4.0E-4 7.0E-4 6.2E-4 2.2E-4
2 9.9E-4 1.5E-3 3.5E-2 4.3E-3 8.1E-4 1.3E-4 3.0E-4 2.7E-4 2.0E-4
3 2.1E-3 8.0E-4 6.0E-2 1.8E-3 4.2E-4 7.1E-5 1.6E-3 1.2E-4 6.2E-4
4 2.4E-4 3.8E-4 9.8E-2 1.2E-2 2.7E-4 4.8E-3 5.7E-5 2.4E-4
5 1.4E-4 2.8E-4 6.9E-2 1.0E-2 1.9E-4 1.2E-3 5.4E-5
6 5.8E-5 2.5E-4 8.8E-2 9.8E-3 1.4E-4 5.1E-3
7 2.2E-4 4.8E-2 1.2E-2 1.1E-4 6.8E-3
8 1.9E-4 7.2E-2 5.0E-3 9.2E-5 5.3E-3
9 1.7E-4 1.0E-1 1.7E-2 2.6E-3

10 1.5E-4 5.9E-2 1.5E-2 2.0E-3
11 1.4E-4 8.4E-2 7.1E-3 1.1E-3
12 1.2E-4 1.0E-1 2.2E-2 3.0E-3
13 1.1E-4 6.4E-2 2.4E-2 1.1E-2
14 9.8E-5 2.6E-2 6.9E-3 9.5E-4
15 4.0E-2 3.3E-2 8.0E-3
16 3.2E-2 3.6E-3 9.1E-3
17 4.0E-3 6.2E-2 7.3E-3
18 2.1E-3 8.1E-2 6.5E-3

costg 7 60 nch nch 36 46 nch 23 90
a HF/6-31G(d) initial geometry. b B3LYP/6-31G(d) initial geometry. c QCISD/MG3 initial geometry. d For the LH column, the HF/6-31G(d) level

is used for the entire Hessian, and a new Hessian is computed at every third iteration; no Hessian update schemes are used. e Use the 9 × 9
critical block scheme. f Central differentiations of gradients are used. g In terms of gradient calculations. h nc denotes not converged within 30
iterations.
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a wrong structure. One of the examples of this type is the
transition state optimization for the following reaction:

In Figures 3 and 4, we plot the energies as function of the
optimization step for cases in which HF/6-31G(d) and
B3LYP/6-31G(d) geometries were used as an initial geom-

etry. Both Figures 3 and 4 show that using the low-level
Hessian can result in a low-energy structure other than the
true saddle point (it is a reactant-like structure), but using
the block Hessian corrects this error straightforwardly and
makes the optimizations much more stable.

The emphasis in the present article has been on saddle
point optimization at high levels of electronic structure theory
in medium-size molecules. When analytic Hessians are not
available, computing the numerical Hessian presents a
computational bottleneck for geometry optimizations if the

Table 3. Maximal Gradient for Transition State Optimization of O + CH4 f OH + CH3 at the MC-QCISD/3 Level Using
Low-Level Hessians (LH), Block Hessians (BH, as Figure 1), and High-Level Hessians (HH)

Ia IIb IIIc

iteration LHd BHe HHf LH BH HH LH BH HH

0 1.5E-2 1.5E-2 1.5E-2 1.8E-2 1.8E-2 1.8E-2 5.7E-3 5.7E-3 5.7E-3
1 9.8E-3 6.4E-3 4.4E-2 1.3E-2 6.7E-3 9.3E-3 3.6E-3 2.6E-3 5.2E-4
2 7.5E-3 2.5E-3 2.4E-3 7.7E-3 3.0E-3 6.1E-3 2.2E-3 1.1E-3 9.2E-5
3 4.4E-2 1.3E-3 1.5E-3 4.4E-3 1.8E-3 6.2E-3 1.3E-3 4.6E-4
4 7.4E-3 5.9E-4 4.0E-4 2.6E-3 8.6E-4 7.5E-4 7.2E-4 2.1E-4
5 2.8E-2 2.7E-4 8.5E-4 1.5E-3 4.1E-4 4.0E-5 6.4E-4 9.3E-5
6 5.8E-2 1.3E-4 3.3E-3 8.4E-4 1.9E-4 1.3E-3
7 3.5E-2 5.9E-5 1.4E-4 6.3E-4 9.6E-5 1.4E-3
8 6.3E-2 2.4E-5 1.1E-3 2.6E-3
9 1.3E-1 2.0E-3 5.0E-3

10 1.0E-1 2.0E-3 4.8E-3
11 5.2E-2 3.8E-3 1.1E-2
12 9.5E-2 7.6E-3 2.0E-2
13 8.2E-2 7.5E-3 1.6E-2
14 7.4E-2 1.4E-2 4.3E-2
15 4.8E-2 2.8E-2 7.0E-2
16 6.2E-2 2.6E-2 6.7E-2
17 7.0E-2 5.7E-2 1.7E-1
18 9.3E-2 7.6E-2 7.3E-2

costg nch 35 117 nch 35 78 nch 24 39
a HF/6-31G(d) initial geometry b B3LYP/6-31G(d) initial geometry c QCISD/MG3 initial geometry d For the LH column, the HF/6-31G(d)

level is used for the entire Hessian, and a new Hessian is computed at every third iteration; no Hessian update schemes are used. e Use the
9 × 9 critical block scheme. f Central differentiations of gradients are used. g In terms of gradient calculations. h nc denotes not converged
within 30 iterations.

Table 4. Statistics of the Convergence Cases Using the
Entire Low-Level Hessian (LH) and the Block Hessian (BH)
Strategy (as Figure 1)

collect by LH BHa

reaction
R2 4/12 7/12
R3 1/12 9/12
R4 3/12 7/12
R5 3/12 6/12

initial geometry
HF/6-31G(d) 3/16 8/16
B3LYP/6-31G(d) 2/16 9/16
QCISD/MG3 6/16 12/16

low-level Hessian
HF/6-31G(d) 8/24 16/24
AM1 3/24 13/24

Hessian update scheme
no updateb 5/24 18/24
DFP 6/24 11/24

in total
11/48 29/48

a This table is based on the 9 × 9 scheme for the high-level block.
b LH or BH Hessians are calculated every three steps and kept frozen
until the next recalculation point.

H + C2H5OH f H2 + C2H4OH (R6)

Table 5. Statistics of the Convergence Cases Using the
Entire Low-Level Hessian (LH) and the Block Hessian (BH)
Strategy (as Figure 2)

collect by LH BHa

reaction
R2 2/12 7/12
R3 6/12 10/12

initial geometry
HF/6-31G(d) 2/8 4/8
B3LYP/6-31G(d) 3/8 6/8
QCISD/MG3 3/8 7/8

low-level Hessian
HF/6-31G(d) 2/12 9/12
AM1 6/12 8/12

Hessian update scheme
no updateb 5/12 9/12
DFP 3/12 8/12

in total
8/24 17/24

a This table is based on the 3 × 3 scheme for the high-level block.
b LH or BH Hessians are calculated every three steps and kept frozen
until the next recalculation point.
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optimization algorithm requires full Hessians. In such a case
the cost is dominated by the calculations of the Hessians, at
least when the present blocked Hessian method is not used.
As we mentioned above, one may use the lower-level
Hessian as an alternative to approximate the true Hessian
during the optimization procedure. Because a low-level
Hessian, especially if computed analytically and by a method
with lower scaling order than the high-level Hessian, is
relatively computationally inexpensive, one may hope that
it provides a satisfactory solution that alleviates the bottleneck
of computing numerical high-level Hessian during geometry
optimizations. However, for some difficult cases, especially
for transition state geometry optimizations, using a low-level
Hessian is not powerful enough because the transition vector
(the eigenvector associated with a negative eigenvalue) to
bring the system to a first-order saddle point is very sensitive

to the accuracy of the Hessian.17 For this kind of situation,
the accurate description of the key Hessian elements involved
in the bond breaking and forming is crucial to direct the
optimization to the correct transition state structure, and the
present method may be especially useful.

Another case of interest is for very large molecules with
lower levels of electronic structure theory (for example,
neglect-of-diatomic-differential-overlap molecular orbital
theory) where the cost is dominated not by the calculation
of the Hessian but by its diagonalization. A scheme that splits
the system into a reaction core and its environment has also
been found to be useful in that case.18

The present paper has used an algorithm in Cartesian
coordinates, although there are some well-known advantages
to optimizing in internal coordinates. The advantages of
Cartisian coordinates are also well-known,19 namely the
simplicity and generality of the algorithms used and the
automatic avoidance of redundancies. In contrast, the ad-
vantage of internal coordinates is that when they are chosen
physically, for example, as valence internal coordinates (bond
stretches, valence angle bends, and torsions), they eliminate
much of the coupling between Cartesians. Our experience,
however, and that of others19,20 is that optimization in
Cartesian coordinates can be very efficient when Hessian
information is used. Furthermore, Cartesians are much
preferred to internal coordinates for solid-state optimiza-
tions21 or surface science,22 where internals can be very
cumbersome, or for clusters.20 A key result of this paper is
that Cartesians can remain efficient even when only a small
portion of the Hessian is computed at the high electronic
structure level at which saddle point optimization is required.
As mentioned above, partial Hessians can also be used with
internal coordinates.

There is considerable interest in combined quantum
mechanical and molecular mechanical methods for electronic
structure calculations, and this is a special case of the need
for multiscale23 and multilevel24,25algorithms. To treat large
systems efficiently, one requires such algorithms not only
for the electronic structure step but also for other steps such
as geometry optimizations, computational thermochemistry,
and dynamics. The present article presents such a scheme
suitable for geometry optimization.
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Abstract: The reaction path is a key concept in the theoretical description of a chemical reaction.

The intrinsic reaction coordinate is defined as the steepest descent path in mass-weighted

Cartesian coordinates that connects the transition state to reactants and products on the potential

energy surface. Recently, a new Hessian based predictor-corrector reaction path following

algorithm was presented that is comparable to a fourth-order algorithm developed earlier.

Although the method is very accurate, it is costly because second derivatives of the energy are

required at each step. In this work, the efficiency of the method is greatly enhanced by employing

Hessian updating. Three different updating schemes have been tested: Murtagh and Sargent,

Powell-symmetric Broyden, and Bofill. Bofill’s update performs the best and yields excellent

speed-up.

1. Introduction
The theoretical treatment of chemical reactions invariably
requires some sort of reaction path following calculation.
The most common use of such a calculation is to ensure
that an optimized transition state (TS) lies on a path
connecting the desired reactant and product minima on the
potential energy surface (PES). Additionally, accurate reac-
tion path following methods are needed to determine the
steepest descent path, or minimum energy path (MEP), so
that variational transition state theory (VTST) and reaction
path Hamiltonian (RPH) methods can be used to calculate
reaction rate constants.1-5 Although the steepest descent path
can be considered in any coordinate system, when mass-
weighted Cartesian coordinates are used the MEP is also
known as the intrinsic reaction coordinate (IRC).6

The IRC can be determined by starting at the TS and
following the steepest descent pathway down to the reactant
and product minima according to

wheres is the arc length along the path,x is the coordinate
vector, andg is the gradient of the PES atx. Because eq 1
is a stiff differential equation, care must be taken during the
integration. As a result, a large number of algorithms have
been developed.7-22

Numerical methods for integrating ordinary differential
equations may be classified as either explicit or implicit.
Explicit methods use information at the current point to move
to the next point, while implicit methods required derivative
information at the end point as well. For integrating eq 1,
the differential equation defining the reaction path, common
explicit algorithms include Euler’s method, the Ishida-
Morokuma-Komornicki (stabilized Euler) method,11,12Runge-
Kutta, the local quadratic approximation (LQA),15,16and the
Sun-Ruedenberg modification of LQA.18 Some of these
methods use only gradient information and are limited to
rather small step sizes; others also use second derivatives
(the Hessian). Methods that use the Hessian are more costly,
but gain additional stability that permits somewhat larger
step sizes.

Implicit methods are more difficult to implement because
the gradient and possibly higher-order derivatives are neces-
sary at the end of the step. As a result, implicit methods
generally use optimization schemes to iteratively solve for* Corresponding author e-mail: hbs@chem.wayne.edu.

dx(s)
ds

) -
g(x)

|g(x)| (1)
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the derivatives at the end point of each step23 and thereby
tend to require multiple energy and derivative calculations
for each point on the path. However, implicit methods are
often able to take considerably larger steps allowing them
to compensate for the cost of the additional derivative
calculations. Implicit methods for IRC analysis include the
Müller-Brown method (implicit Euler),17 the second-order
method of Gonzalez and Schlegel (GS2),19,20 and higher-
order methods by the same authors.21

In recent work, we introduced a new integrator for reaction
path following.24 Our Hessian based predictor-corrector
(HPC) method provides a very accurate pathway and was
originally designed to provide a useful approach for describ-
ing the reaction path for use in kinetics calculations (e.g.,
using VTST or RPH methods). In that work, it was shown
that HPC is capable of step sizes comparable to the robust
and widely used GS2 method. An attractive feature of the
HPC integrator is that it only requires one evaluation of the
energy and derivatives per IRC step, while the GS2 method
typically requires between two and five energy and derivative
evaluations per step in order to iteratively solve for the
endpoint gradient. However, the original HPC algorithm
requires Hessians at every step making it generally more
expensive than GS2, which only requires first derivatives.
In the present paper we remove this bottleneck by applying
Hessian updating, and we show that this affords a very
efficient and accurate means for computing IRCs. The
approach here is to compute the Hessian analytically only
at the TS and to update the second derivatives for the rest
of the IRC integration. As we show below, using an
appropriate updating scheme allows HPC step sizes similar
to the popular GS2 integrator while only slightly diminishing
the accuracy of the original HPC method (using all analytic
Hessians). This indicates that the general HPC cost will be
two to five times less than for GS2, since both methods can
be used with similar step sizes and HPC with Hessian
updating requires only one energy and gradient evaluation
at each step. In this way, the HPC algorithm is not only useful
for accurate reaction path following needed for rate constant
calculations but is also efficient for those studies that require
reaction path following primarily to ensure that an optimized
TS lies on the pathway that connects the relevant reactant
and product structures on the PES.

2. Method
In this work, we incorporate standard Hessian updating
schemes into our Hessian based predictor-corrector (HPC)
reaction path following algorithm, which has been previously
described in detail.24 In this section, the HPC method is
briefly described, and the Hessian updating approaches are
discussed.

A. Hessian Based Predictor-Corrector (HPC) Method.
The HPC algorithm uses the local quadratic approximation
(LQA) method of Page and McIver15,16 for predictor steps
and a modified Bulirsch-Stoer integrator25-27 on a distance
weighted interpolant (DWI) surface28-30 for corrector steps.
In this section, both pieces of the HPC method are dis-
cussed.

The LQA integrator is based upon a second-order Taylor
series of the PES. Truncated at the quadratic term, the Taylor
series expansion of the PES aboutx0 is given by

where ∆x, g0, and H0 are the displacement vector of the
current position fromx0, the gradient, and Hessian atx0,
respectively. Taking the first derivative of eq 2 with respect
to x gives the gradient as

Substituting eq 3 into eq 1 gives

In the LQA method of Page and McIver, eq 4 is integrated
by introducing an independent parameter,t, such that

and

The solution to eq 6 is given by

where

In eq 8, U is the matrix of column eigenvectors of the
Hessian andR(t) is a diagonal matrix given by

whereλi are the eigenvalues of the Hessian.
To integrate eq 4, one must obtain a value oft such that

the desired step size (s - s0) is taken. To accomplish this,
iterations over successive Euler integrations of eq 5 are used.
The initial value for the Euler step size,δt, is estimated by

whereNEuler is the number of Euler steps to be taken. In the
present implementation,NEuler ) 5000. The numerical
integration of eq 5 can be carried out readily in the Hessian
eigenvector space

where

E(x) ) E0 + g0
t∆x + 1

2
∆xtH0∆x (2)

g(x) ) g0 + H0∆x (3)

dx(s)
d

) -
g0 + H0∆x

|g0 + H0∆x| (4)

ds
dt

) |g0 + H0∆x| (5)

dx
dt

) -[g0 + H0∆x] (6)

x(t) ) x0 + A(t)g0 (7)

A(t) ) UR(t)Ut (8)

Rii(t) ) (e-λit - 1)/λi (9)

δt ) 1
NEuler

(s - s0)

|g0|
(10)

ds

dt
) (∑

i

g′oi

2e-2λit)1/2 (11)

g′0 ) Utg0 (12)
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At the start of the integration, whenx corresponds to the
TS, the gradient is zero, and hence the transition vector must
be used in place ofg0. At the TS, the LQA step is equivalent
to the gradient extremal step, as described by Hoffman, Nord,
and Ruedenburg.31 At the end of the LQA integration, when
x approaches the minimum wells of the reactant and product,
t heads to infinity and the LQA step is equivalent to a
Newton-Raphson step, which leads to the minimum energy
structure in the local quadratic region. For this reason,
conservation of the desired step size, (s - s0), becomes
difficult in this region. Therefore, once the calculation has
moved beyond the quadratic region of the TS each LQA
step is compared to a Newton-Raphson step. When the
Newton-Raphson step is shorter than the LQA step, the
Newton-Raphson step is taken in lieu of the LQA step. This
provides convergence stability for the corrector step (see
below) when the minimum well is approached.

The Bulirsch-Stoer integrator, which is very well described
elsewhere,25-27,32 is used for the HPC corrector step. Each
Bulirsch-Stoer step is comprised of three basic components.
First, a simple gradient based integrator is used to take
multiple steps along the Bulirsch-Stoer step interval. In
general, this integrator is modified midpoint; however, in
our tests we found that the stiff character of eq 1 is greatly
magnified by modified midpoint. Therefore, our modified
version employs simple Euler integration. A detailed discus-
sion of the causes for Euler integration being more stable
than modified midpoint is available in previous work.24 The
second component of a Bulirsch-Stoer step is to describe
the solution of the Euler integration as a polynomial function
of step size and to extrapolate to a step size of zero
(corresponding to the case where an infinite number of steps
are taken). The third component consists of evaluating the
error of the extrapolation to zero step size. If the error is
too large, the process is repeated using more steps in
the Euler integration, which in turn provides one more
data set for the polynomial extrapolation. If the error is
acceptable (<1 × 10-6 amu1/2 bohr in the present case), then
the extrapolated solution is accepted and the integration is
completed.

This integrator requires a large number of function and
gradient evaluations and can be quite costly if energies and
derivatives are required from electronic structure methods.
However, in the present algorithm the Bulirsch-Stoer integra-
tion is carried out on a surface that is fitted to energy and
derivative information already available at the beginning and
end of the predictor step (LQA). Once the Bulirsch-Stoer
integration is completed and the LQA end point is corrected,
the gradient on the fitted surface is used to take the next
LQA predictor step. Since the corrected end point and
predicted end point are expected to lie within the same
quadratic region of the PES, the Hessian from the previous
predictor end point is used for the next LQA step. The
validity of this assumption has been demonstrated in previous
work.24,33,34

In the current algorithm, the Bulirsch-Stoer integration
is carried out on a DWI surface such as those described
by Collins and co-workers.30,35-37 DWI surfaces have
been used in a number of diverse applications38 and are well

suited for modeling chemical PESs.30 This fitted surface
gives the interpolated energy,EDWI, at a positionx according
to

where the summation is taken over the start (i)1) and end
(i)2) points of the predictor step, about which Taylor
expansions,{Ti}, are evaluated and added together in a
weighted fashion, defined by the weighting functions{wi}.
In the present implementation, the two Taylor expansions
are truncated at the second-order term and the weighting
functions are defined as

B. Hessian Updating Methods.To study larger and more
interesting systems with electronic structures methods, the
efficiency of the HPC algorithm must be improved. To
accomplish the same goal, Hessian updating methods have
been utilized in the past with great success with quasi-
Newton geometry optimization methods8,39-41 and ab initio
classical trajectory calculations.34 Furthermore, other reaction
path following methods have been able to make good use
of Hessian updating.9,19-21,42 These prior successes indicate
that, for HPC, Hessian updating may provide a means to
decrease computational cost, especially for applications
where Hessians are not needed for additional calculations at
each point on the path and users intend to obtain the IRC
only to ensure that an optimized TS lies on a pathway
connecting reactants to products. Nevertheless, careful
consideration must be given to the choice of updating scheme
since the updated Hessians will not only be used to propagate
the IRC via LQA, but HPC also requires Hessians to fit the
DWI surface for the modified Bulirsch-Stoer corrector
integration. A poorly updated Hessian may lead to an
inaccurate DWI surface, severely disturb the corrector
integration, and provide an inadequate gradient for the next
LQA predictor step.

For minimizations, the BFGS Hessian updating scheme
is preferred.43,44A principle reason for this preference is that
the BFGS formula maintains a Hessian that is positive
definite. This characteristic of the BFGS formula is achieved
by employing positive weights that are functions of the
current Hessian. In the case of reaction path following, the
Hessian will be negative definite in some regions (i.e., near
the TS) and the BFGS formula becomes ill-conditioned.45

As a result, Hessian updating methods that have been used
for TS optimization problems are more appropriate and have
been considered. In this work, three different Hessian
updating schemes have been incorporated with HPC to
determine which, if any, provides an acceptable integra-
tion of the IRC while affording the desired increase in
efficiency.

EDWI ) ∑
i)1

2

wiTi (13)

w1 )
|∆x2|2

|∆x1|2 + |∆x2|2
, w2 )

|∆x1|2

|∆x1|2 + |∆x2|2
(14)
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The first updating scheme used is the method of Murtagh
and Sargent (MS), which is also known as the symmetric
rank one formula (SR1). The MS update is given by

For optimization on a quadratic surface, MS updating
converges to the correct Hessian without exact line
searches.43,44 However, care must be taken to avoid MS
updating if the denominator of eq 15 becomes small.

Alternatively, the Powell-symmetric-Broyden (PSB) up-
dating method can be employed. The PSB update is

The PSB updating scheme is free from the possibility of
division by zero, unlike the MS update. Another Hessian
updating approach that also avoids the division by zero
problem of MS updating is Bofill’s formula, which combines
the MS and PSB schemes.46 Bofill’s update was devised as
an alternative updating scheme for TS optimizations and is
given by

where

An alternative form for Bofill’s update has been proposed
by Farkas and Schlegel.47,48 In their approach,φ is given by
the square root of eq 18. For HPC reaction path following,
the modified Bofill update provides similar results to the
standard Bofill method. As a result, this update is not
explicitly considered in this work.

3. Numerical Tests
The HPC algorithm and the three Hessian updating schemes
discussed above have been implemented in the development
version of GAUSSIAN 03.49 Aside from the Hessian at the
TS, which is computed analytically, all Hessians are obtained
by updating during the HPC reaction path calculation. Four
systems have been employed for testing: HCNf HNC,
CH3CH2F f CH2CH2 + HF, ClCH3 + Cl- f Cl- + CH3-
Cl, and the Diels-Alder reaction of ethene and butadiene.
Calculations on the HCN rearrangement reaction have been
carried out at the HF/STO-3G level of theory,50,51 those on
the four center elimination reaction have been carried out at
the HF/3-21G level of theory,52-54 and calculations on ClCH3
+ Cl- f Cl- + CH3Cl and the Diels-Alder reaction have
been carried out at the HF/6-31G(d) level of theory.55-59

Because the masses of the atoms that dominate the reaction
path are quite different for these four reactions, a fixed step

size in mass-weighted coordinates would correspond to
significantly different step sizes in nonmass-weighted coor-
dinates. However, the trust radii for the quadratic regions of
the four reactions should be similar when expressed in
nonmass-weighted coordinates. Therefore, we chose a step
size in nonmass-weighted coordinates at the TS, transformed
it to mass-weighted coordinates, and used it for the rest of
the path. In particular, we selected step sizes of 0.10 and
0.40 bohr for each of the four test reactions.

As an initial test for the accuracy of IRCs computed using
HPC integration with the three updating schemes described
above, we compared plots of energy vs reaction coordinate
and various internal coordinates vs reaction coordinate with
the HPC paths computed using all analytic Hessians. In these
tests, the paths were computed from the respective TSs down
to reactant and product minima, which were detected
according to one of two stopping criteria: (1) the magnitude
of the Cartesian gradient is less than 1.5× 10-4 Hartree
bohr-1 or (2) the angle between two successive steps is less
than 30°.

Visual inspection indicates that in the region near the TS
all three updating methods yield very good pathways when
compared to the path using all analytic Hessians. Near the
endpoints (i.e., the reactant and product wells), the PSB and
Bofill schemes perform well, while the MS updates result
in large deviations from the reference pathway for some
reactions. Here, we show plots for two reactions that are
representative of the set studied. Figures 1 and 2 relate to
the HCN rearrangement reaction. Figures 1(a) and 2(a) give
the (x,y) coordinates of the H atom, where the C-N center
of mass has been placed at the origin, the C-N bond has
been placed on thex-axis, the C atom has been placed on
the negative side of thex-axis, and the N atom has been
placed on the positivex-axis. Figures 1(b) and 2(b) show
the C-N bond length as a function of the reaction coordinate.
Figures 3(a) and 4(a) show energy profiles for the four center
elimination reaction, CH3CH2F f CH2CH2 + HF. Figures
1(c), 2(c), 3(b), and 4(b) show the errors in the pathways,
given by the perpendicular distance from the paths computed
with all analytic Hessians, as a function of reaction coordi-
nate.

It is clear from Figures 1 and 3 that with a step size of
0.10 bohr PSB and Bofill updating schemes both yield very
good paths. MS updating does well with the four center
elimination reaction with the smaller step size but yields long
C-N bonds for the HCN rearrangement. For the paths
integrated with a step size of 0.40 bohr, the behavior of the
three updating schemes is qualitatively similar to the results
from integration with a step size of 0.10 bohr. As one might
expect, slight deviations from the reference path for PSB
and Bofill updating with the smaller step size become
somewhat more apparent when the larger step size is used.
Nevertheless, agreement of the paths found using these two
updating schemes with the analytic Hessian pathway is still
acceptable. The errors in the MS updating paths remain small
for the four center elimination reaction but are much larger
for the HCN rearrangement. As shown in Figures 1(c) and
2(c), the errors in the MS pathways for the HCN rearrange-

∆HMS ) Hnew- Hold )
(∆g - Hold∆x)(∆g - Hold∆x)t

(∆g - Hold∆x)t∆x
(15)

∆HPSB)
(∆g - Hold∆x)∆xt + ∆x(∆g - Hold∆x)t

∆xt∆x
-

∆xt(∆g - Hold∆x)∆x∆xt

(∆xt∆x)2
(16)

∆HBofill ) φ∆HMS + (1 - φ)∆HPSB (17)

φ )
(∆xt(∆g - Hold∆x))2

∆x2(∆g - Hold∆x)2
(18)
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ment rapidly extend beyond the vertical scale of the plot as
the reactant and product valleys are approached.

For both reactions, the MS paths prematurely detect
minima wells and terminate. In the case of the HCN
rearrangement, the calculation detects the reactant well before
the H-C-N angle has reached 180°. Calculations on the
four center elimination reaction end early heading toward
the product when the larger step size is used and end early
in the reactant direction with both step sizes. We have found
that this is a common problem with MS updating, which is

clearly apparent in Figures 1-4. In all cases, the calculations
terminated according to the first stopping criteria listed
abovesthe magnitude of the Cartesian gradient is less than
1.5× 10-4 Hartree bohr-1. As mentioned earlier, the gradient
used in each HPC predictor step comes from the DWI
gradient at the end point from the previous corrector step.
Consequently, a poor Hessian can result in a local minimum
on the DWI surface and artificially cause the calculation to
complete.

The problems experienced using MS updating can be
corrected by computing analytic Hessians every few steps.

Figure 1. Reaction path for HCN f HNC with all analytic
Hessians vs all updated Hessians using a step size of 0.10
bohr. (a) Coordinates of H atom relative to the C-N center
of mass, (b) C-N bond length vs reaction coordinate, and
(c) error, given by perpendicular distance from the all analytic
Hessian path, vs reaction coordinate [HPC paths using
analytic Hessians (s), MS updated Hessians (4), PSB
updated Hessians (O), Bofill updated Hessians (×)]. Note:
plot (c) shows solid lines connecting points for MS, PSB, and
Bofill updated paths for clarity. Every third point is shown for
simplicity (for all three plots).

Figure 2. Reaction path for HCN f HNC with all analytic
Hessians vs all updated Hessians using a step size of 0.40
bohr. (a) Coordinates of H atom relative to the C-N center
of mass, (b) C-N bond length vs reaction coordinate, and
(c) error, given by perpendicular distance from the all analytic
Hessian path, vs reaction coordinate [HPC paths using
analytic Hessians (s), MS updated Hessians (4), PSB
updated Hessians (O), Bofill updated Hessians (×)]. Note:
plot (c) shows solid lines connecting points for MS, PSB, and
Bofill updated paths for clarity.
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Specifically, we have found that updating at least once every
five steps provides very good agreement with the all analytic
Hessian pathways. One could also recompute the Hessian
whenever the rms change in matrix elements is larger than
a threshold.42 Both options have been included in this
implementation of the method. Nevertheless, PSB and Bofill
updating methods work well enough for the reactions
considered in this paper that no analytic Hessians are required
during the course of the IRC integration, except at the TS.

Although Figures 1-4 provide a qualitative measure of
the accuracy, a quantitative measure of the accuracy of each

updating scheme is desirable. To this end, we have computed
the perpendicular distance between points on the updated
Hessian and analytic Hessian pathways, which are reported
in Table 1.

The inferiority of MS updating is clear from the data
provided in Table 1. Indeed, for the HCN rearrangement
reaction (using the smaller step size) the errors in the paths
are roughly 2 orders of magnitude greater for MS than for
Bofill and PSB [see Figure 1(c)]. For the four center
elimination [see Figure 3(b)] and Diels-Alder reactions, all
three updating schemes essentially perform the same, while
the symmetric SN2 reaction has RMS errors in position that

Table 1. RMS Errors in Position (Å) for HPC Reaction Path Following Using MS, PSB, and Bofill Hessian Updating
Methods with ∆s ) 0.10 and 0.40 bohra

Hessian updating method

reaction step size MS PSB Bofill

HNC f HCN 0.10 3.36 × 10-2 3.35 × 10-4 3.05 × 10-4

0.40 6.96 × 10-2 1.60 × 10-2 1.05 × 10-2

CH3CH2F f CH2CH2 + HF 0.10 8.55 × 10-3 2.58 × 10-3 4.73 × 10-3

0.40 5.78 × 10-2 6.56 × 10-2 8.46 × 10-2

ClCH3 + Cl- f Cl- + CH3Cl 0.10 2.33 × 10-2 1.09 × 10-2 3.04 × 10-3

0.40 b 1.21 × 10-1 3.46 × 10-2

Diels-Alder 0.10 1.94 × 10-2 1.38 × 10-2 1.58 × 10-2

0.40 6.35 × 10-2 8.33 × 10-2 9.50 × 10-2

a ∆s ) 0.10 and 0.40 bohr correspond to 0.1082 and 0.4326 amu1/2 bohr for HNC f HCN; 0.1090 and 0.4362 amu1/2 bohr for CH3CH2F f
CH2CH2 + HF; 0.3545 and 1.4182 amu1/2 bohr for ClCH3 + Cl- f Cl- + CH3Cl; and 0.2524 and 1.0098 amu1/2 bohr for the Diels-Alder
reaction. b The integration of eq 1 failed for this calculation.

Figure 3. Reaction path for CH3CH2F f CH2CH2 + HF with
all analytic Hessians vs all updated Hessians using a step
size of 0.10 bohr. (a) Energy profile and (b) error, given by
perpendicular distance from the all analytic Hessian path, vs
reaction coordinate [HPC paths using analytic Hessians (s),
MS updated Hessians (4), PSB updated Hessians (O), Bofill
updated Hessians (×)]. Every third point is shown for simplic-
ity.

Figure 4. Reaction path for CH3CH2F f CH2CH2 + HF with
all analytic Hessians vs all updated Hessians using a step
size of 0.40 bohr. (a) Energy profile and (b) error, given by
perpendicular distance from the all analytic Hessian path, vs
reaction coordinate [HPC paths using analytic Hessians (s),
MS updated Hessians (4), PSB updated Hessians (O), Bofill
updated Hessians (×)].

66 J. Chem. Theory Comput., Vol. 1, No. 1, 2005 Hratchian and Schlegel



considerably larger when MS and PSB updating are used as
compared to Bofill updating for this step size. For the larger
step size, the errors from paths using all three updating
methods are much larger than the cases where the smaller
step size is employed in the integration. These differences
in errors are approximately 1 and 2 orders of magnitude.
Additionally, the superiority of PSB and Bofill updating
schemes over MS is not, in general, as clear when a larger
integration step is used. In fact, for the four center elimination
reaction the MS path is better than the PSB or Bofill paths,
although the differences in errors for each path are small.

It is worth noting that the path errors due to Hessian
updating (Table 1) are only slightly larger than the path errors
previously measured for paths using all analytic Hessians at
similar step sizes.24 This indicates that using all updated
Hessians only slightly decreases the accuracy of the IRC and
that HPC with Hessian updating is capable of integrating
the IRC using a step size that is similar to GS2. With Hessian
updating, HPC requires only one energy and one gradient
evaluation per step, making HPC very competitive with GS2
and other popular IRC integrators.

Since the data suggest that updating using Bofill’s formula
is, for most applications, superior to the other methods
considered, the Bofill updating scheme has been chosen as
the default scheme for HPC with Hessian updating. As
previously stated, the impetus for this work is to increase
the efficiency of HPC to allow its use in studies of large
and interesting systems. Therefore, the relative speed-up due
to updating (using the Bofill updating scheme) has been
investigated. Table 2 shows relative CPU times for calculat-
ing 40 steps in the forward direction and 40 steps in the
reverse direction for the HCN rearrangement, four center
elimination, symmetric SN2, and Diels-Alder reactions. The
choice of the number of steps is completely arbitrary and is
kept uniform among the reactions considered to provide for
better cost comparison and determination of basis set size
dependence. Table 2 also shows the relative cost for the
insertion of NO into a Co-CH3 σ bond, which has been
previously studied by Hall and co-workers.60-62 In this work,
we have employed the B3LYP/6-311G(d,p) level of
theory.63-66 Due to the size of this system we have only
calculated paths with 25 steps in the forward direction and
25 steps in the reverse direction.

As expected, updating the Hessian provides large decreases
in computational cost. The degree of speed-up afforded by
Hessian updating is dependent on the size of the system

studied. This is expected since the bottleneck in the all
analytic Hessian calculations is Hessian evaluation and the
bottleneck in the updated Hessian calculations is the com-
putation of the energy and gradient. Therefore, the speed-
up due to Hessian updating will depend on the differential
between the energy and Hessian calculations. For the HCN
rearrangement reaction (11 basis functions) the decrease in
cost for the calculation with all updated Hessians is roughly
34%, while using updated Hessians for the NO insertion
reactionsthe largest system studied here (388 basis func-
tions)sprovides nearly an order of magnitude speed-up.

4. Conclusions
In this paper, the efficiency of our Hessian predictor-corrector
reaction path following algorithm has been improved by
utilizing Hessian updating, making it an attractive alternative
to other commonly used IRC integrators. In every case
considered, the Hessian has been calculated analytically only
at the TS. All subsequent steps have used updated Hessians.
The relative performance of three popular Hessian updating
schemes was investigated, and it was determined that the
best method is the Bofill update. Using this updating
approach, the relative CPU speed-up for HPC calculations
on five different reactions was studied. For the smallest
system considered, HCN rearrangement, a relative speed-
up of roughly a factor of 1.3 was observed. For the largest
system studied, NO insertion into a Co-CH3 σ bond, nearly
an order of magnitude speed-up was accomplished.
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Abstract: The conductor-like polarizable continuum model (CPCM) using several cavity models

is applied to compute aqueous solvation free energies for a number of organic molecules (30

neutral molecules, 21 anions, and 19 cations). The calculated solvation free energies are

compared to the available experimental data from the viewpoint of cavity models, computational

methods, calculation time, and aqueous pKa values. The HF/6-31+G(d)//HF/6-31+G(d) and

the HF/6-31+G(d)//B3LYP/6-31+G(d) with the UAKS cavities, in which radii are optimized with

PBE0/6-31G(d), provide aqueous solvation effects in best agreement with available experimental

data. The mean absolute deviations from experiment are 2.6 kcal/mol. The MP2/6-31++G-

(d,p)//HF/6-31+G(d) with the CPCM-UAKS(HF/6-31+G(d)) calculation is also performed for the

base-catalyzed hydrolysis of methyl acetate in water.

Introduction
Many chemical and biological reactions occur in water,
where the polar and ionic processes are much more favorable
than in the gas phase. Many efforts have been devoted to
the development of methods to compute reaction barriers
and energetics occurring in condensed phases with experi-
mental accuracy.1 Effective explicit water models become
available for the description of chemical systems in liquid
solution.1 However, with high-level quantum mechanics, only
a limited number of solvent molecules can be included
explicitly due to the high cost of the calculations.

The goal of this work is to determine which theoretical
procedure provides the most quantitative estimate of aqueous
solvation effects, so that the rates of chemical and biological
reactions in water can be computed accurately. One of the
most successful solvation models is the conductor-like
polarizable continuum model (CPCM).2 Here we benchmark
different variations of CPCM for the computation of solva-
tion energies of neutral and ionic organic species and
compare them to several other works. The CPCM method
has also been applied to the computation of the alkaline
hydrolysis of methyl acetate in aqueous solution.

Background
Dielectric continuum theories1 are now widely used to
describe hydration in conjunction with quantum mechani-
cal calculations due to the relatively low cost of the
calculation. CPCM2 and PCM3 are two of many successful
solvation models. In their approaches, the solute interacts
with the solvent represented by a dielectric continuum model.
The solute molecule is embedded into a cavity surrounded
by a dielectric continuum of permittivityε. The accuracy of
continuum solvation models depends on several factors;
the most important one is the use of proper boundary
conditions on the surface of the cavity containing the solute.
CPCM and PCM define the cavities as envelopes of spheres
centered on atoms or atomic groups: a number of cavity
models have been suggested. Inside the cavity the dielectric
constant is the same as in vacuo, outside it takes the value
of the desired solvent. Once the cavity has been defined,
the surface is smoothly mapped by small regions, called
tesserae. Each tessera is characterized by the position of its
center, its area, and the electrostatic vector normal to the
surface passing through its center. Recently, the CPCM
method has been improved and extended in GAUSSIAN034a

so that the cavity can be selected in a number of different
ways.* Corresponding author e-mail: houk@chem.ucla.edu.
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In CPCM, the solvation free energy can be expressed1a

∆Gel is the electrostatic component of∆Gsolv. TheGel term
is calculated using the CPCM self-consistent reaction field
(SCRF) method.2 The cavitation term,∆Gcav, is calculated
with the expression derived by Pierotti from the hard sphere
theory5 and adapted to the case of nonspherical cavities.3b

The dispersion and repulsion terms,∆Gdis and ∆Grep, are
computed following Floris and Tomasi’s procedure,6 with
the parameters proposed by Callet and Claverie.7 Theqrot,g,
qvib,g, qrot,s, andqvib,s are denoted the microscopic partition
functions for rotational and vibrational states of the solute
in the gas phase and in solution, respectively;nsolute,g and
nsolute,sare the numeral densities of solute; andΛsolute,gand
Λsolute,sare the momentum partition functions. The last term,
P∆V, may be neglected since its value is normally less than
10-3 kcal/mol.8 The quantity,-RT ln(nsoluteΛsolute), is a free
energy correction to account for solute occupying the entire
volume available in the reference state. For simple models
such as isotropic solutions with no chemical association or
dissociation processes, this contribution is equal to zero. The
term involving the vibrational and rotational degrees of
freedom, ln(qvib,g/qvib,s) and ln(qrot,g/qrot,s), is negligible.1a

The last three terms in eq 1 are neglected in the PCM and
CPCM formulations.1a It, however, has been noted that things
are actually more complex when one considers dimers or
trimers held together by relatively weak interactions and for
chemical association or dissociation processes.1a

Computational Method
The CPCM-SCRF calculations2 at the HF/6-31+G(d) and
B3LYP/6-31+G(d) levels were carried out on the stationary
points to address solvation effects. A dielectric constant of
78.39 was utilized in order to simulate aqueous environment.
The CPCM calculations were performed with tesserae of 0.2
Å2 average size. All structures were optimized at the HF/6-
31+G(d) and B3LYP/6-31+G(d) levels9-11 in the gas phase
and at the B3LYP/6-31+G(d) level in the aqueous environ-
ment. All stationary points were characterized by frequency
calculations at the same level. All calculations were carried
out with GAUSSIAN034a and GAUSSIAN98.4b We used 1
mol L-1 as the standard state for both the gas phase and the
solution for all thermodynamic properties.

In CPCM and PCM, the choice of cavities is important
because the computed energies and properties depend on the
cavity size. In this study, the UA0, UAHF, UAKS, UFF,
PAULING, and BONDI cavities were used to evaluate the
aqueous solvation effects using CPCM and PCM. The UA0
cavity is built up using the united atom topological model
(UATM)8a applied on atomic radii of the universal force field
(UFF).9 By default, the UA0 model is chosen to build the
cavity in GAUSSIAN03.14 The UAHF and UAKS cavities
use UATM with radii optimized for the HF/6-31G(d) and
PBE0/6-31G(d)10 levels of theory, respectively. The UAHF
model is the default cavity of GAUSSIAN98. A set of the

radii from UFF is used for making the UFF cavities. For the
PAULING and BONDI cavities, each solute atom and group
is assigned van der Waals values obtained from Pauling12b

or Bondi12c atomic radii.

Test of the Reliability of CPCM
Aqueous solvation free energies for a number of organic
molecules (30 neutrals, 21 anions, and 19 cations) computed
using the CPCM method.2 We investigated the calculated
solvation free energies compared to the available experi-
mental data16 from the viewpoint of cavities, computational
methods, calculation time, and aqueous pKa values. The
computed aqueous solvation effects were also compared with
solvation energies computed using COSMO,2 cluster-
continuum model,17 SM5.42R,18 PCM,3 and IPCM methods.19

Cavity Models. Table 1 summarizes the mean absolute
deviations (MADs) of the aqueous solvation free energies
calculated with seven cavities at the HF/6-31+G(d)//B3LYP/
6-31+G(d) level9-11 from the experimental data16 for 70
neutral and charged molecules.

CPCM with the new cavities, UAKS and UAHF(G03),
has improved accuracy in the aqueous solvation energies for
a set of 70 organic species, though these methods still do
not achieve the accuracy of experimental data (0.2 kcal/mol
for neutral molecules20,21 and 2 kcal/mol for ions16). The
MADs calculated by the CPCM-UAKS and CPCM-UAHF-
(G03) are 2.61 kcal/mol (1.35, 3.21, and 3.93 kcal/mol for
30 neutrals, 21 anions, and 19 cations, respectively) and 2.84
kcal/mol (1.10, 3.92, and 4.93 kcal/mol), respectively. On
the other hand, the CPCM-UA0 and CPCM-UFF methods
fail for charged molecules with MADs of 9.64 (13.09) and
9.30 (15.12) kcal/mol for anion (cation) solutes, respectively.
The PAULING cavities show the best solvation free energies
(2.73 kcal/mol) for anion molecules but give the worst
agreement with experiment for neutrals. For all cavities but
the PAULING cavities, the calculated solvation free energies
for the neutral molecules are much closer to the experimental
results than those for the charged species. The large solvation
energy errors for the ions is due to inadequate treatment of
specific short-range interactions, probably associated with
strong hydrogen bonds between the ions and first-shell water
molecules. Dielectric continuum theory1 cannot account for
short-range solute-solvent interactions such as hydrogen
bond. In addition, since anions and cations have aqueous
solvation free energies in the range of 60-110 kcal/mol in

∆Gsolv ) ∆Gel + ∆Gcav + ∆Gdis + ∆Grep +

RT ln (qrot,gqvib,g

qrot,sqvib,s
) - RT ln (nsolute,gΛsolute,g

nsolute,sΛsolute,s
) + P∆V (1)

Table 1. Mean Absolute Deviations (MADs) of the
Aqueous Solvation Free Energies of 70 Neutral and
Charged Molecules at the HF/6-31+G(d)//B3LYP/
6-31+G(d) Level Using CPCM with Several Cavitiesa

total neutral anion cation

UAKS 2.61 1.35 3.21 3.93
UAHF(G03) 2.84 1.10 3.92 4.93
UAHF(G98) 2.95 1.43 3.86 4.32
BONDI 3.64 2.93 3.38 5.04
PAULING 3.67 3.49 2.73 4.98
UA0 7.62 2.75 9.64 13.09
UFF 8.10 2.82 9.30 15.12
a MADs are shown in kcal/mol.

Benchmarking the CPCM for Aqueous Solvation Free Energies J. Chem. Theory Comput., Vol. 1, No. 1, 200571



contrast to neutral molecules (0-10 kcal/mol), it is hard to
achieve the 1 kcal/mol level of accuracy in prediction of the
solvation free energy of ions.

Computational Methods. Table 2 shows the computa-
tional method dependence of MADs of the solvation free
energy for the neutral and charged solutes. The geometries
were optimized in the gas phase, and the UAKS cavities were
used. The MADs of the solvation free energies at the HF/
6-31+G(d)//B3LYP/6-31+G(d) level become 0.7 kcal/mol
smaller than those at the B3LYP/6-31+G(d)//B3LYP/6-
31+G(d) level. Especially, MADs of the solvation energies
for the anion solutes are improved by 2.43 kcal/mol. There
is a tendency that the cavity that reduces MADs of charged

species increases the MADs of the neutral species. Optimiza-
tion at the HF level provides MADs similar to those at the
B3LYP level, indicating that optimized geometries using HF
and B3LYP are close to each other.

Calculated MADs of the neutral and charged solutes with
the geometries optimized in water are shown in Table 3. The
geometries optimized in water make the MADs of charged
species small while those for neutrals large. As a whole,
optimization in water shows MADs similar to those in vacuo,
implying that the optimized structures in water are similar
to those in vacuo. In Table 4, the optimized geometrical
parameters for some examples in vacuo and water are
reported. It is apparent that the effect of reoptimization in
water on the geometrical parameters are very small. How-
ever, some charged species failed to optimize geometries in
water due to the dissociation of a proton, especially using
the UAKS, UAHF, and PAULING cavities (Tables S10-
S15).

The 6-31G, 6-31G(d), 6-31+G(d), 6-31+G(d,p), and
6-311+G(2d,p) basis sets were utilized to investigate the
dependence on basis sets for aqueous solvation free energies.
Even when basis sets are enlarged up to 6-311+G(2d,p), the
MAD values from the experiment are very similar as shown
in Table 5, indicating that diffuse and polarization functions
of basis sets hardly change the aqueous solvation effects.

Calculation Time. Figure 1A shows the CPU time
required to calculate the hydration energy using the previous
(GAUSSIAN98)4b and the present (GAUSSIAN03)4a ver-
sions of the code. The present version provides a remarkable
decrease of computational time because of the introduction
of the fast multipole method to compute the solvation charge.

In Figure 1B, we compare CPCM to PCM with respect to
the CPU time for the estimate of the aqueous solvation free
energies in water. Although PCM is faster than CPCM for
small molecules, CPCM is faster when the molecules become
larger. In the CPCM approach, the electrostatic problem
related to solute-solvent interaction can be solved with a

Table 2. Mean Absolute Deviations (MADs) of the
Aqueous Solvation Free Energies of 70 Neutral and
Charged Molecules at the HF/6-31+G(d)//B3LYP/
6-31+G(d), B3LYP/6-31+G(d)//B3LYP/6-31+G(d), and
HF/6-31+G(d)//HF/6-31+G(d) Levels Using CPCM with the
UAKS Cavitiesa

HF//HF HF//B3LYP B3LYP//B3LYP

total 2.56 2.61 3.32
neutral 1.14 1.35 0.88
anion 3.10 3.21 5.64
cation 4.34 3.93 4.32
a MADs are shown in kcal/mol.

Table 3. Mean Absolute Deviations (MADs) of the
Aqueous Solvation Free Energies of 70 Neutral and
Charged Molecules at the HF/6-31+G(d)//B3LYP/
6-31+G(d) Level Using CPCM with the UAKS Cavitiesa,b

water vacuo

total 2.60 2.61
neutral 1.79 1.35
anion 3.00 3.21
cation 3.60 3.93

a MADs are shown in kcal/mol. b The geometries were optimized
in the water environment and in vacuo.

Table 4. Optimized Geometrical Parameters and Aqueous Solvation Free Energies for Some Sample Molecules in Vacuo
and in Water

CH3O- CH3OH CH3NH3
+

vacuo water vacuo water vacuo water

∆Gsolv
a -87.69 -88.53 ∆Gsolv

a -6.23 -6.43 ∆Gsolv
a -71.02 -72.59

R(C-O)b 1.34 1.40 R(C-O)b 1.43 1.43 R(C-N)b 1.52 1.50
R(O-H)b 1.14 1.11 R(C-H)b 1.10 1.10 R(C-H)b 1.09 1.09
∠COHc 115.6 113.0 R(O-H)b 0.97 0.98 R(N-H)b 1.03 1.04

∠COHc 109.0 108.8 ∠CNHc 111.6 111.6
∠OCHc 112.0 111.6 ∠NCHc 108.2 108.2

a ∆Gsolvs are shown in kcal/mol. b Bond lengths are shown in Å. c Angles are shown in degrees.

Table 5. Mean Absolute Deviations (MADs) for the Aqueous Solvation Free Energies of 70 Neutral and Charged Molecules
at the HF and B3LYP Levels Using CPCM-UAKS with Five Different Basis Setsa

total neutral anion cation total neutral anion cation

HF 6-31G 2.86 1.74 3.66 3.76 B3LYP 6-31G 2.95 0.91 4.63 4.31
6-31G(d) 2.78 0.93 4.08 4.28 6-31G(d) 3.17 0.68 5.16 4.90
6-31+G(d) 2.61 1.35 3.21 3.93 6-31+G(d) 3.32 0.88 5.64 4.32
6-31+G(d,p) 2.56 1.38 3.19 3.72 6-31+G(d,p) 3.23 0.87 5.74 4.19
6-311+G(2d,p) 2.77 1.49 3.52 3.95 6-311+G(2d,p) 3.28 0.75 5.92 4.37

a The geometries were optimized in vacuo at the B3LYP/6-31+G(d) level.
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much simpler formalism than in PCM. This simpler formal-
ism can be a faster estimate of the aqueous solvation free
energies when larger systems are studied.

Aqueous pKa. Aqueous pKa values were evaluated using
the B3LYP/6-31+G(d)//B3LYP/6-31+G(d) level of theory
and inclusion of solvent effects at the HF/6-31+G(d) and
B3LYP/6-31+G(d) levels. At present, many theoretical pKa

predictions have been reported.17b,22The vast majority of pKa

calculations use the direct definition shown in eq 2 with
combination of the experimental data of the proton.1c,22a-f

Since this reaction, however, involves the formation of
charged species starting from neutral molecules, the proce-
dure using eq 2 yields large errors due to imbalance of the
charged and neutral species and requires the value of the
experimental solvation free energy of the H+ ion. By
comparison, reactions that conserve the number of charged
species are more suitable for accurate calculations of changes
in solvation free energies. Pliego and Riveros used the
proton-transfer reaction between the HA acids and hydroxide
anion as shown in eq 3 along with the continuum-cluster
method17aand compared their calculated values with the pKa

values calculated with the other solvation models. Since our
objective is the benchmarking of the CPCM method, we
made use of the reported results by Pliego and Riveros for
comparison of the CPCM-UAKS and performed the pKa

calculations according to their procedure.17b,22g,h

The reaction (eq 3) conserves the number of charged species.
The pKa values were calculated according to eqs 4 and 5

where ∆Gg
/ is the gas-phase reaction free energy (1 mol

L-1 standard state) relative to eq 5, and∆Gsolv
/ (X) is the

solvation free energy of species X according to the Ben-
Naim definition.23

The proton-transfer reaction as shown in eq 6 was used
for the ionization of BH+ acids

The pKa values for BH+ acids can be expressed as

The calculated aqueous pKa values for 27 species are listed
in Table 6. CPCM provides MADs of the aqueous pKa values
of 2.83 and 2.47 pKa units at the HF/6-31+G(d) and B3LYP/
6-31+G(d) levels, respectively. The largest error occurs for
(CH3COOC2H5)H+ and amounts to 6.32 and 6.55 pKa units.
The pKa values estimated at the B3LYP/6-31+G(d) level
are closer to experiment16 than at the HF/6-31+G(d) level
in contrast to the aqueous solvation free energy, indicating
that accurate pKa calculations require accurate gas-phase
proton-transfer energies and solvation free energies.

Comparisons with Other Work. Our calculations have
been also compared with other works as shown in Tables 7
and 8. We used the calculated data by Pliego and Riveros,17

except for the CPCM2 and COSMO2 results. MADs of
aqueous solvation free energies for 13 charged species are
listed in Table 7. The higher accuracy of CPCM is observed
and leads to a MAD of 3.04 kcal/mol, whereas the cluster-
continuum,17a the COSMO,2 the SM5.24R,18 and the PCM
methods3 have MADs of about 10 kcal/mol. The IPCM
method19 shows the worst MAD of almost 20 kcal/mol. The
failure of the cluster-continuum model can be traced to the
continuum part of the calculation, specifically, the IPCM
method. Improper cavities result in much larger MADs for
the COSMO and PCM methods than for the CPCM method
with appropriate cavity model, UAKS. PCM-UAKS provides

Figure 1. CPU times for the calculation of the aqueous solvation free energies at the HF/6-31+G(d) level by CPCM-UAKS
using GAUSSIAN03 and GAUSSIAN98 (A) and by the CPCM-UAKS and PCM-UAKS methods using GAUSSIAN03 (B).

BH+ + H2O f B + H3O
+ ∆Gsol

/ (6)

pKa(BH+) )
∆Gsol

/

(2.303)RT
- 1.74 (7)

∆Gsol
/ ) ∆Gg

/ + ∆Gsolv
/ (B) + ∆Gsolv

/ (H3O
+) -

∆Gsolv
/ (H2O) - ∆Gsolv

/ (BH+) (8)

HA f H+ + A- (2)

HA + OH- f A- + H2O ∆Gsol
/ (3)

pKa(HA) )
∆Gsol

/

(2.303)RT
+ 15.74 (4)

∆Gsol
/ ) ∆G*g + ∆Gsolv

/ (A-) + ∆Gsolv
/ (H2O) -

∆Gsolv
/ (OH-) - ∆Gsolv

/ (HA) (5)
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MADs of 5.28 kcal/mol for 13 charged species. The IPCM
method provides a very appealing approach to the problem
of the cavity size. Unfortunately, besides the convergence
problems that sometimes plague these methods, it seems that
a single value for the density threshold is not adequate to

reproduce experimental data, so that the problem of linking
the atomic size to the molecular context remains.

Recently, Thompson, Cramer, and Truhlar presented a new
continuum solvation model (SM5.43R) and compared it to
the other solvation models including SM5.42R and CPCM.20

Table 6. Calculated and Experimental pKa’s in Water

pKa(calc.) pKa(calc.)

compounds B3LYPa HFb pKa(exp.) compounds B3LYPa HFb pKa(exp.)

CH3CH2O-H 21.80 20.93 15.90 H2P-H 23.86 26.29 27
CH3COO-H 5.47 6.62 4.76 C6H5O-H 12.63 13.10 9.99
CH3O-H 21.12 21.54 15.50 C6H5S-H 7.31 8.18 6.62
H-Br -12.10 -9.96 -8 CH3CH2OH-H+ -0.07 -0.38 -1.94
HCC-H 23.68 25.83 21.70 (CH3)3N-H+ 11.69 11.36 9.80
HCOO-H 3.24 4.75 3.75 (CH3)2CdO-H+ -1.09 -1.61 -3.06
H-CN 10.28 12.51 9.22 (CH3COOC2H5)-H+ -10.93 -11.16 -4.61
H-Cl -10.79 -8.71 -6.10 (CH3)2NH-H+ 11.89 11.58 10.73
H-F 0.68 1.40 3.18 CH3NH2-H+ 10.37 10.09 10.66
H-OBr 11.37 14.93 8.60 CH3OH-H+ -0.90 -1.45 -2.05
H-OCl 10.21 13.78 7.54 (CH3)2O-H+ -5.60 -6.13 -2.48
HO-H 15.74 15.84 15.74 H3N-H+ 9.17 8.99 9.25
HOO-H 16.35 19.20 11.65 (C6H5COCH3)-H+ -8.32 -8.53 -3.87
HS-H 6.38 8.48 7.05 MAD 2.47 2.83
a Electronic and aqueous solvation free energies are calculated at the B3LYP/6-31+G(d)//B3LYP/6-31+G(d) level. b Electronic energies are

calculated at the B3LYP/6-31+G(d)//B3LYP/6-31+G(d) level, and aqueous solvation energies are estimated at the HF/6-31+G(d)//B3LYP/6-
31+G(d) level.

Table 7. Comparison of the Aqueous Solvation Free Energy Calculated with CPCM,a Cluster-Continuum Model,b COSMO,c

SM5.42R,d PCM,e and IPCMf

CPCM cluster-continuum COSMO SM5.42R PCM IPCM Exp.

CH3O- -87.69 -82.37 -81.22 -86.79 -79.98 -64.18 -95.2
Cl- -73.39 -67.94 -74.68 -77.05 -72.70 -61.80 -74.6
HCOO- -74.61 -63.77 -73.27 -75.22 -72.41 -60.81 -76.2
C2H5O- -84.93 -77.66 -77.61 -81.87 -76.70 -61.24 -91.1
OH- -106.57 -93.08 -96.29 -108.96 -92.14 -69.64 -105
C6H5O- -67.89 -68.60 g -64.59 -63.78 -52.96 -71.3
SH- -70.37 -64.68 -72.12 -84.37 -71.04 -57.98 -71.6
CH3S- -70.79 -63.87 -70.23 -78.97 -69.27 -56.58 -73.7
CH3CH2OH2

+ -87.57 -75.71 -69.06 -74.04 -66.12 -66.48 -88.4
CH3NH3

+ -71.02 -72.69 -71.62 -76.03 -69.17 -68.83 -76.5
CH3OH2

+ -91.99 -84.64 -74.62 -79.82 -71.16 -72.24 -93.1
H3O+ -108.59 -101.87 -90.09 -92.51 -83.64 -88.77 -110.2
NH4

+ -80.36 -79.38 -81.43 -87.03 -77.42 -77.56 -85.2
MAD 3.04 8.91 9.15 7.49 11.27 19.46
a HF/6-31+G(d)//B3LYP/6-31+G(d) with UAKS cavities. b MP2/6-31+G(2df,2p)//HF/6-31+G(d,p). IPCM were used for the continuum part

(ref 17a). c HF/6-31G(d)//B3LYP/6-31+G(d) with Klamt cavity model (SCRF)COSMORS). d HF/6-31G(d)//HF/6-31+G(d,p) (ref 17a). e HF/6-
31G(d,p)//HF/6-31+G(d,p). The spheres defining the cavity were taken to be 1.2 times the van der Waals radii (ref 17a). f MP2/6-31+G(d,p)//
HF/6-31+G(d,p). An isodensity of 0.0004 was used (ref 17a). g Not converged.

Table 8. Comparison of the Aqueous pKa Values Calculated with CPCM,a Cluster-Continuum Model,b SM5.42R,c and
PCMd

CPCM
cluster-

continuum SM5.42R PCM exp. CPCM
cluster-

continuum SM5.42R PCM exp.

CH3CH2O-H 21.80 16.08 25.93 16.52 15.90 C6H5O-H 12.63 7.19 16.98 4.50 9.99
CH3COO-H 5.00 2.57 8.25 -3.27 4.76 CH3CH2OH-H+ -0.07 -4.16 0.17 1.74 -1.94
CH3O-H 21.12 16.08 25.40 17.32 15.50 CH3NH2-H+ 10.37 15.30 23.56 26.11 10.66
HCOO-H 2.83 1.03 4.30 -5.11 3.75 CH3OH-H+ -0.90 -1.73 0.64 1.53 -2.05
H-Cl -10.79 -9.25 -5.40 -13.47 -6.10 H3N-H+ 9.17 11.73 23.38 23.61 9.25
HS-H 6.38 5.69 2.33 0.35 7.05 MAD 2.19 2.06 6.20 6.91

a B3LYP/6-31+G(d)//B3LYP/6-31+G(d) with UAKS cavities. b MP2/6-31+G(2df,2p)//HF/6-31+G(d,p). IPCM were used for the continuum part
(ref 17b). c HF/6-31G(d)//HF/6-31+G(d,p) (ref 17b). d HF/6-31G(d,p)//HF/6-31+G(d,p). The spheres defining the cavity were taken to be 1.2
times the van der Waals radii (ref 17b).
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The MADs calculated by the SM5.43R, SM5.42, CPCM-
UAHF(G03), and CPCM-UAHF(G98) were 0.51, 0.54, 1.07,
and 1.08 kcal/mol for 257 neutrals and 4.65, 4.83, 4.57, and
5.90 kcal/mol for 47 ions, respectively. SM5.43R provides
highly accurate aqueous solvation free energies for neutral
species compared to experimental data. We cannot directly
compare our calculated results to theirs, because they did
not report what species were used for the calculation of the
aqueous solvation energies, nor did they report the calculated
aqueous solvation free energies. However, from Table 7, the
MADs calculated by the CPCM-UAKS (3.04 kcal/mol) is a
factor of 2.5 smaller than those calculated by the SM5.42R
(7.49 kcal/mol) for 13 ions. Furthermore, they reported that
the CPCM-UAHF(G98) gives smaller MADs than both the
SM5.43R and SM5.42R for 47 ions. We found that a MAD
calculated by CPCM-UAKS (3.5 kcal/mol) is smaller than
that calculated by CPCM-UAHF(G98) (4.1 kcal/mol) for 40
ions (Table 1). These comparisons indicate that CPCM-
UAKS is expected to give prediction of more accurate
aqueous solvation energies for ions than SM5.42R and
SM5.43R.

Table 8 lists the aqueous pKa values for 11 species. The
cluster-continuum model is the most reliable for the estimate
of aqueous pKa values and has a MAD of 2.06 pKa units.
Despite the lack of explicit water molecules, the CPCM
method is also reasonable with an aqueous pKa MAD of 2.19,
but SM5.42R and PCM have much larger MADs (about 6
pKa units). The worst computed aqueous pKa values come
from SM5.42R and PCM methods. Compared with the PCM
method, the CPCM method provides much better calculated
aqueous pKa values because of the cavities used.

Application of the CPCM for Chemical
Reactions
The base-catalyzed hydrolysis of methyl acetate in water24,25

was investigated with the CPCM method. The hydrolysis of
esters in basic solution stands out as one of the most studied
reactions in chemistry because of its common occurrence in
many organic and biochemical processes. In the base-
catalyzed ester hydrolysis in water, with isolated methyl
acetate and hydroxide ion (Reactants) as the starting
materials, the approach of hydroxide ion to methyl acetate
forms a tetrahedral intermediate (Int ) through a transition
state (TS1). Another barrier (TS2) is crossed to form the
products, methanol and acetate ion (Products), via nonbarrier
proton transfer.

Guthrie evaluated the free energy changes in this reaction
using thermochemical and kinetic data.24aThe calculated free
energies for the five stationary points (Reactants, TS1, Int ,
TS2, andProducts) have been compared to them.

The free energies for the base-catalyzed hydrolysis reaction
of methyl acetate were calculated at the MP2/6-31++G-
(d,p)//HF/6-31+G(d) level. All the stationary points were
obtained by full geometry optimizations in vacuo and
characterized by harmonic frequency analysis. Zero point
energies and thermal corrections at 298 K (scaled by 0.91)26

were included in the reported energies. Solvation energies
were computed using the CPCM-UAKS method at the HF/
6-31+G(d) level using GAUSSIAN03.4a We used 1 mol L-1

as the standard state for both the gas phase and the solution
for all thermodynamic properties.

Table 9 shows the calculated and experimental free
energies24a for the stationary points of the base-catalyzed
hydrolysis of methyl acetate in water. The HF/6-31+G(d)
geometries of the stationary points in the base-catalyzed
hydrolysis of methyl acetate are illustrated in Figure 2. The
calculated relative Gibbs free energy forProducts reproduces
the experimental value to 1 kcal/mol. In contrast, those for
TS1 and Int were overestimated by 2.8 and 5.1 kcal/mol.
In the base-catalyzed hydrolysis ofN,N-dimethylacetamide,
Massova and Kollman estimated the free energy difference
of 28.7 kcal/mol between the intermediate and the reactants
using the PCM-UAHF(G98).27 This values is about 10 kcal/
mol larger than the experimental value of 19 kcal/mol.28

Pliego and Riveros calculated an activation barrier (17.6 kcal/
mol) close to experiment (18.6 kcal/mol),24a but this was
because there was an equally high error in the calculations
of the TS and reactants:25ethe calculated solvation free energy
of the hydroxide ion,-92.5 kcal/mol, gives an especially
large deviation from experiment (-105.0 kcal/mol).16a

CPCM-UAKS provides the reasonable solvation free energies

Table 9. Calculated and Experimental Gibbs Free
Energies for the Stationary Points of the Base-Catalyzed
Hydrolysis of Methyl Acetatea,b

∆G(MP2)c ∆G(exp.)

Reactants 0.0 0.0
TS1 21.3 18.5
Int 15.1 10.0
TS2 26.5 17.4
Products -13.5 -14.4

a All Gibbs free energies relative to the isolated reactants. b All
Gibbs free energies are shown in kcal/mol. Standard state of 1 mol
L-1 for both gas phase and water phase thermodynamic properties.
Correction factors (-RT ln 2) were included for the enantiomeric
minima and the transiton state structures. c MP2/6-31++G(d,p)//HF/
6-31+G(d).

Figure 2. HF/6-31+G(d) geometries of Reactants , TS1, Int ,
TS2, and Products in the base-catalyzed hydrolysis of methyl
acetate. Distances are in angstroms.
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for the hydroxide ion (-105.5 kcal/mol). Compared to other
methods, CPCM-UAKS gives an improved estimate of the
activation barrier of hydrolysis but still overestimates it. An
entropic correction in solution may be required for further
improvement, because the CPCM total solute energy does
not include an entropic change in solution as shown in eq 1.
The ester hydrolysis involves association and dissociation
processes, and the solute in this case is a transition state
composed of two or more loosely bound molecules. The
much larger deviation (about 10 kcal/mol) ofTS2 is likely
due to the involvement of an explicit water molecule, which
is proposed by previous theoretical works.25 The accurate
evaluation of the relative free energy forTS2 must include
an explicit water molecule.

Conclusions
Benchmarks of different variations of CPCM for the
computation of solvation energies of neutral and ionic organic
species have been performed and compared to other work
in the literature. The CPCM-UAKS method provides the
aqueous solvation free energies in agreement with experi-
mental data and with improved computational times com-
pared to other cavity methods. The mean absolute deviations
from experiment are 2.6 kcal/mol. The largest solvation
energy errors are obtained for anions and cations.
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Abstract: We present an ab initio density functional study of the adsorption of a series of water

oligomers (molecule, dimer and trimer) on nickel surfaces with and without step defects. We

investigate the preferred adsorption geometries and adsorption energies and analyze the binding

mechanisms by means of electronic density difference maps. Special attention is devoted to

the incremental adsorption process, i.e., the way additional molecules attaches to an already

adsorbed water. In agreement with recent findings, we show that the first water molecule is

bound to the surface with an energy of about 0.2-0.4 eV, i.e., with up to twice the strength of

a hydrogen bond. In contrast to this, subsequent water molecules increase the total adsorption

energy by typically 0.5 eV. However, electron density difference considerations indicate that

this additional attraction is not due to the interaction of the new molecule with the surface but

mediated by the first water molecule. The interaction of the additional molecule with the surface

appears even to be repulsive. We discuss the implications of these findings for the wetting

properties of transition metal surfaces.

1. Introduction
The interaction of water with metal surfaces is of tremendous
importance for industrial applications and of very high
relevance in surface chemistry. The fundamental mechanisms
of the initial phases of this adsorption process has been the
subject of a variety of recent experimental and theoretical
investigations1-6 and is still a matter of intense controversy.7-9

There is evidence that the water molecules can approach
the surfaces in both hydrogen-up and hydrogen-down
orientations. Depending on the metal species, a water
monolayer can be formed through simultaneous binding of
all water molecules to the surface, e.g. in the case of Pt-
(111), or alternatively as a partially dissociated layer, which
is the case for Ru(0001).2,4

The deposition of isolated water molecules has already
been studied on several flat metallic surfaces, such as
Ru(0001), Rh(111), Pd(111), Pt(111), Cu(111), and
Ag(111).10-12 An interesting mechanism for dimer diffusion

through a combined proton tunneling and molecular rotation
scheme has been proposed recently.13

Most of these studies deal with the interaction of either a
single water molecule on a metallic slab or the adsorption
of a highly symmetric water monolayer. A high degree of
order facilitates the computational modeling within periodic
boundary conditions, because the unit cell can be kept small.

In this work, we study more extended systems, which
allow for significantly more geometrical relaxation. Our aim
is to focus on a realistic description of the initial steps of
wetting, going beyond a single adsorbed molecule but
without imposing a complete coverage of the surface. For
this purpose, we look at the adsorption of a sequence of water
oligomers on nickel. Starting from an isolated molecule, we
investigate a water dimer as well as a trimer, paying
particular attention to the influence of hydrogen bonding on
the adsorption energy and the structure of the adsorbate. In
particular, we compare the incremental adsorption energy
due to the addition of a second and third molecule.

Inspired by previous studies,14-17 we look not only at a
perfect surface but also at the simplest possible defect, a one-
dimensional step. This is realized by using a surface in the

* Corresponding authors fax:+49-6131-379-100; e-mail: sebastia@
mpip-mainz.mpg.de (D.S.) and fax:+49-6131-379-100;
e-mail: dellsite@mpip-mainz.mpg.de (L.D.S.).
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(221) direction. The adsorption-enhancing effect of such steps
has also been shown very recently by experimental studies
of germanium deposition on silicon surfaces.18

2. Computational Details
We have modeled the flat and stepped surfaces within density
functional theory (DFT) as two-dimensional slabs under
periodic boundary conditions. We have chosen hexagonal
supercells containing 3 (111)-layers for the (221) step and 4
layers for the flat surface, with nickel supercells of 2× 2
atoms for the water monomer on the flat surface, 3× 3 for
the water dimer and trimer on the flat, and 1× 2 for the
monomer and dimer on the step surface. In all cases, the
slabs were separated in the third dimension by about 10 Å
of vacuum. Throughout this work, a plane-wave cutoff of
60Ry has been used,19 together with Troullier-Martins
pseudopotentials20 in the Kleinman-Bylander scheme for
hydrogen and oxygen as well as a special pseudopotential
by Lee21 for nickel. All calculations have been done with
the PBE exchange-correlation functional.22 The electronic
structure has been computed using the implementation of
the free energy functional of Alavi.23,24 In this approach, a
finite-temperature propagator is diagonalized iteratively for
the electronic degrees of freedom, ensuring a Fermi distribu-
tion function for the occupation levels of the Kohn-Sham
orbitals. We have used a 4× 4 × 1 and a 3× 3 × 1 k-point
mesh within the Monkhorst-Pack scheme25 to sample the
Brillouin zone for the step and flat surfaces, respectively.
Using this computational setup, we could reproduce the
recently published results of Michaelides et al.26 for the
adsorption of a highly structured water monolayer with a
numerical error of less than 50 meV.

Geometry optimizations were done until the atomic forces
dropped below a threshold of 2‚10-3atomic units. This level
is sufficiently strict for the considered systems; further
optimization changes the total energy by negligible amounts
only.27 We have also computed an estimator for the artificial
energy lowering due to the periodicity of our simulation cell.
An isolated water molecule in our standard box has a total
energy which is about 0.01 eV lower than that in a box of
twice the lattice constant.

All adsorption energies have been computed with respect
to single isolated water molecules in the same simulation
box (thus eliminating the dipole interaction error):

This definition also allows to obtain directly the incremental
adsorption energies for an additional water molecule, which
would be more involved when considering the adsorption
energy of the water cluster as an entity (i.e. when taking
E[(H2O)n] instead ofnE[H2O]).

We have further computed electron density difference
maps for selected energetically favorable configurations,
showing the rearrangement of the density between the
surface-adsorbed Ni‚(H2O)n complex and the fragments. For
visualizing these maps, we plot color-coded slices with the
projected electron density differencesδF defined as

Here, in contrast to the definition of the energy difference,
the density plots compare the adsorbed system with the water
oligomer cluster and the isolated surface. In this way, the
density displacements due to the formation of hydrogen
bonds between the water molecules are not plotted, while
the modifications of these densities due to the adsorption
become visible. The density difference maps were computed
in orthorhombic cells obtained by doubling the original
hexagonal unit cells and by cutting out a suitable orthor-
hombic subpart of at least the size of the original setup. This
was necessary for a proper visualization of the densities with
the program MOLEKEL.28

3. Results
3.1. Monomer.The geometry for three typical adhesion sites
(“top”, “bridge”, and “hollow”) of a single water molecule
on a flat nickel surface was optimized as well as “top” and
“bridge” sites on a 221-surface which represents a step defect.
Pictograms illustrating the top and bridge geometries on the
flat and stepped surfaces are shown in Figures 1 and 2. The
corresponding adsorption energies for these configurations
which exhibit a (local) minimum of the potential energy

Table 1. Energetical and Structural Data for the Various Water Oligomers and Surfacesa

∆E dNi-O ∆xy(O) ∆z(Ni) R dO‚‚‚O

(H2O)2 0.22
Niflat‚(H2O)1,atop 0.242 2.26 0.14 0.17 5
Niflat‚(H2O)1,bridge 0.10 3.02 0.02 0.16 -10
Nistep‚(H2O)1,atop,trans 0.403 2.12 0.04 0.10 4
Nistep‚(H2O)1,bridge,trans 0.249 2.46 0.03 0.08 8
Nistep‚(H2O)1,atop,cis 0.397 2.10 0.07 0.05 2
Nistep‚(H2O)1,bridge,cis 0.137 2.51 0.05 0.03 0
Niflat‚(H2O)2,atop 0.675 2.12 0.16 0.19 22 2.71
Nistep‚(H2O)2,atop 0.900 2.09 0.13 0.08 28 2.69
Niflat‚(H2O)3,atop 1.26 2.08 0.2 0.25 34 2.72/2.81
Niflat‚(H2O)3,bridge 1.09 2.24 0.2 0.11 72 2.69/2.7

a Adsorption energies (∆E) are in eV and are always computed relative to isolated water molecules according to eq 1, such as to include also
the hydrogen bonding energy. The Ni-O bond lengths (dNi-O), the vertical displacements of the binding nickel atom (∆z(Ni)), and the lateral
displacements of the binding oxygen atom from its optimal position (∆xy(O)) are given in Å, and the angle between the molecular plane of the
adsorbing water molecule and the surface (R) is in degrees. A negative angle means that the hydrogens are pointing toward the surface. For
oligomers, the distance between the oxygen atoms (dO-O) is also shown in Å.

∆E ) E[Ni ·(H2O)n] - E[Ni] - nE[H2O] (1)

δF(x, z) ) ∫ dy(FNi·(H2O)n(r ) - FNi(r ) - F(H2O)n(r )) (2)
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surface are shown in Table 1. The energies of the top site
differ from those of the bridge position by typically a factor
of 2 in favor of the top configuration. Since the hollow
system relaxed to the top site, it was not considered further.
Despite the tetrahedral location of the lone pairs of the
oxygen atom, the geometry optimization yields a flat
arrangement of the molecule, so that the protons are found
at the same distance from the surface as the oxygen (for both
flat and step cases).

We have explicitly checked a possible vertical adsorption
geometry for the flat surface on the hollow site and a tilted
one (with one OH-bond parallel to the surface and the other
OH normal to it) on the atop site. For both initial geometries,
the optimization yields a flat orientation, and in the case of
the hollow site, the oxygen atom also moves over to the atop
site. Intermediate adsorption energy values from the opti-
mization process are in the area of 0.1 eV during the turning
process. This indicates that when the water molecule
approaches the surface vertically, the adsorption strength is
roughly half as large as in the parallel orientation. These
results are in full agreement with the orientations found by
Ranea, Michaelides, and others10,11,13for water configurations
on various other metallic surfaces.

Similar to the recently studied case of an adsorbed benzene
molecule,14 the adsorption of a water molecule is significantly
stronger on the surface with the step defect than on the flat
one. The adsorption energy for the latter is roughly one
hydrogen bond (cf. the (H2O)2 value in Table 1), while the
step provides about twice that attraction. There exists a cis
and a trans orientation (both shown in Figure 2) for the step
defect, but their adsorption energy is almost the same. Thus,
the top position on the step surface reaches the highest energy
value, which is also approximately equal to the typical
hydrogen bond energy of a 4-fold-coordinated liquid water
molecule.

The electron density difference according to eq 2 for both
the flat and step surfaces is shown in Figure 3. The plot
represents the density of the aggregate minus the sum of the
densities of the isolated surface and the water molecule at
the top site (trans configuration for the step).

The formation of a weak bond between the surface nickel
atom and the oxygen is clearly visible through the displace-
ment in electronic density (dark green and blue regions). To
some extent, we also find additional density on top of the
water molecule, while relatively little is removed from the
central area around the oxygen. Most of the electronic density

is taken from the bonding nickel atom, which is strongly
polarized, and its first neighbors.

Similar to the case of an adsorbed benzene molecule,14

the polarization of the nickel atom which is bonded to the
water molecule is significantly stronger on the step surface

Figure 1. Pictogram of the two adsorption sites for the flat
nickel surface which constitute local minima of the potential
energy surface: top (left) and bridge (right). The hollow
structure turns out to converge toward the top configuration.
Only two layers of nickel atoms are shown: the first surface
layer is drawn with bonds, the second layer as spheres only.

Figure 2. Pictogram of the two adsorption sites for the
stepped nickel surface: top/cis (upper left), top/trans (upper
right). A comparison with the bridge site is given below, from
a top view: top/cis (lower left), and bridge/cis (lower right).
As in Figure 1, the atoms of the top layer are drawn with
bonds, those of the deeper layers as spheres only.

Figure 3. Density difference plots for the adsorption of a
water molecule on the flat (top plot, atop configuration) and
the step surfaces (bottom plot, atop trans configuration). The
scale is given in units of e/Å2.
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than on the flat one. This effect also translates into the higher
adsorption energy for the latter.

3.2. Dimer. The second step in water adsorption on the
surface is the attachment of a second water molecule to the
first one. For this purpose, the geometries of a water dimer
on the nickel surfaces (flat and with the step defect) have
been optimized. Since the monomer adsorption is energeti-
cally significantly more favorable on the top site than in the
bridge position, only the atop configuration has been con-
sidered.

The computed Ni-O bond distances and adsorption
energies are shown in Table 1. They are taken relative to
isolated water molecules in order to have a common
reference for all systems. On both the flat and the step
surfaces, the attachment of an additional water molecule to
the first one through a hydrogen bond yields an additional
0.43 eV and 0.5 eV, respectively. These energies are about
twice as large as it would be expected for a standard
hydrogen bond (cf. the water dimer in Table 1), leading again
to an adsorption strength that is comparable to that of a water
molecule in liquid water. Especially on the step defect, two
water molecules attach with an energy that is equivalent to
four hydrogen bonds, while still possessing two hydrogen
bond acceptor sites (one on each oxygen) and two dangling
donor protons.

Thus, the dimer adsorption on the metal surface can
energetically compete with the solvation of the second
molecule in liquid water, even though the optimized cluster
on the surface is not directly comparable to the situation in
liquid water due to the high dynamics of the hydrogen bond
network at finite temperature.

For the flat surface, a part of this increased energy probably
stems from the decreased Ni-O bond distance compared to
the water monomer, whereas the step surface does not show
this effect.

The analysis of the electronic density difference for the
dimer adsorption on the flat surface is shown in Figure 4.
According to eq 2, the isolated water dimer is taken as
reference system, to suppress the charge difference due to
the water-water hydrogen bond and to show rather how
much this hydrogen bond is changed due to the adsorption
on the surface. The plot reveals that the bonding mechanism
of the first water molecule is essentially the same as for the

monomer, except that the charge displacement around the
first water is now less symmetric than before. There is a
region of strongly increased electron density leading to a
Ni-O bond and an additional charge increase on top of the
first water molecule. Furthermore, the amount of electronic
charge density which is found on top of the bonding Ni atom
is significantly stronger than for the water monomer (deep
blue color in Figure 4 compared to light blue in Figure 3).

It is interesting to note that the second water molecule
does not bind directly to the surface, it is even repelled from
it. The second oxygen is not accumulating any electronic
density toward the metal surface, and there is a distinguish-
able region of decreased electron density (yellow color
coding) below the hydrogen which points toward the surface.
In contrast to this, the hydrogen bond between the two water
molecules becomes slightly stronger than in the isolated
dimer, as seen by the polarization of the H-bond accepting
oxygen.

3.3. Water Trimer on the Flat Surface. The last point
in our investigation focuses on the adsorption of a third water
molecule onto H2O dimer on the flat nickel surface. As
before, the energy and the bonding distance of the first water
are shown in Table 1 for both the bridge and the top sites.
The energy difference between bridge and top geometries is
conserved upon adsorption of further molecules, implying
that the secondary water molecules do not feel any significant
influence from the adsorption site of the first one.

It is surprising that the third water increases the total
adsorption energy by almost 0.6 eV, thus practically doubling
the value of the dimer. This can be explained only in parts
by the decreased Ni-O bond length directly. The density
difference map of the trimer, which is shown in Figure 5
for the top site, reveals a highly increased electronic charge
density in the Ni-O bond region, at the expense of the areas
below the dangling protons of the secondary water molecules.
Together with a very high polarization of the binding nickel
atom as well as slightly stronger hydrogen bonds between
the waters, this indicates a much stronger binding of the first
oxygen atom.

It is interesting to note that this increased binding of the
first water is practically not related to any of its geometric
properties but is rather due to the mere presence of secondary
water molecules, which constitute a kind of a first solvation

Figure 4. Electron density difference plot for the adsorption
of a water dimer on the flat surface.

Figure 5. Electron density difference plot for the adsorption
of a water trimer on the flat surface.
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shell. These additional water molecules perturb and repel
the electron density at the metal surface in the neighborhood
of the initial molecule in such a way that the polarization of
the bonding nickel is significantly increased. This phenom-
enon is already visible for the adsorbed dimer but even
stronger in the presence of a third water molecule.

4. Conclusion
We have presented an investigation of the energetic details
and the electronic mechanism of the adsorption of water
oligomers on nickel surfaces with and without a step defect.
The data shown indicates an increased binding strength on
the step and in “top” geometries. The findings are in good
agreement with previous theoretical and experimental results
for similar systems,6 where an energetic enhancement of
water adsorption was found along step defects on platinum
surfaces.

Further, we could show by means of electronic density
difference maps that additional water molecules tend to
strengthen the nickel-oxygen bond. This effect leads to a
significant stabilization of the binding of the first water
molecule and to strongly increased binding energies of the
dimer and trimer complexes. Not surprisingly, the adhesion
of water to nickel surfaces is much weaker than of aromatic
molecules such as benzene or phenol,14,29,30but the adsorption
energies can definitively compete with those found in liquid
water. The second and third water molecule increased the
total binding energy by the equivalent of more than two hy-
drogen bonds each, which correspond to the average binding
energy per molecule of standard 4-fold coordinated water.

By means of our study, the initial steps of aqueous wetting
of transition metal surfaces can be understood on the basis
of electronic effects that govern molecular adsorption.
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Abstract: In this work, the average bifurcation value of the electron localization function (ELF)
of both σ (ELFσ) and π (ELFπ) contributions was used to construct an aromaticity scale for
chemical compounds. We have validated the scale with a series of well-known molecules and
then used it to evaluate global aromaticity on aluminum based clusters, which present σ
aromaticity and π antiaromaticity. The proposed scaled predicts an overall antiaromatic character
for the Al44- moiety.

Introduction
The concept of aromaticity and, by extension, antiaromaticity,
has general acceptance among the chemical community.
However, the criteria used to validate the aromaticity or
antiaromaticity of a chemical compound are controversial,1-8

due to the fact that a well-established definition of these
concepts has yet to be presented in a quantitative way for
general use.2-21

Currently there is an interesting discussion about the net
aromaticity of a chemical species when it presents both,σ
aromaticity andπ antiaromaticity.22 The all metal cluster
Al4

4- is a classical example where this phenomenon appears
to be present. The Al4

4- ring in Li3Al 4
- is not square. It has

two slightly different bond lengths, and it contains 4π
electrons. These characteristics plus the shape of the mo-
lecular orbitals have been used to classify this species as
antiaromatic.23 On the other hand however, this analysis has
been presented as an incomplete view of the electronic
properties of this compound, because, although the cluster
is π antiaromatic, it presents characteristics of aromaticity
in its σ system.24 While the different studies23,24agree in the
σ aromatic andπ antiaromatic character of the ion, the

differences appear in the global characterization of the
species as aromatic or antiaromatic.

The lack of a unique scale of aromaticity is an important
limiting factor in this debate. Scales based on structure or
energetic behavior such as the harmonic oscillator model of
aromaticity (HOMA)25,26or the aromatic stabilization energy
(ASE),2 respectively, have been proposed. Other aromaticity
criteria based on the analysis of electron delocalization12,13

or associated to measurable response properties20 have also
been used. These scales have been constructed thinking in
traditional organic aromatic rings, and it is not clear that they
can be applied to all metal clusters. Recently, the nucleus
independent chemical shift (NICS) index,5 based on magnetic
properties, has been extensively used in the theoretical
literature. Extensions and modifications5,6 as well as criti-
cism16,19 of this methodology have been published.

An alternative approach, based on properties of the electron
density probed by the electron localization function (ELF)27

of Becke and Edgecombe,28 has been introduced to under-
stand aromaticity.14,15,29A separation of the ELF into itsσ
and π components was shown to provide a useful scheme
to discussσ and π character in a molecular system.30 The
ELF is defined in terms of the excess of local kinetic energy
density due to the Pauli exclusion principle,T(F(r)), and the
Thomas-Fermi kinetic energy density,Th(F(r))
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Its numerical values are conveniently mapped on the
interval (0,1) facilitating its analysis and interpretation.
According to the interpretation of the ELF, a region of the
space with a high value of ELF corresponds to a region where
it is more probable to localize an electron or a pair of
electrons. Hence, local maximum (attractors) of the ELF
characterize these regions, and the volume enclosed by all
gradient lines which end up at one attractor is called a basin.
At low values of the ELF, the volume enclosed by the
respective isosurface may contain more than one attractor,
and eventually, for a sufficiently low value, all the attractors
will be contained in the isosurface. When the isosurface goes
to larger values of the ELF, the basins begin to split, and,
finally, the respective isosurface shows all the basins
separated. This process is conveniently followed by means
of a bifurcation diagram.31 The bifurcation points have been
interpreted as a measure of the interaction among the
different basins and, chemically, as a measure of electron
delocalization.31,32Here, this scheme will be used to construct
aσ andπ aromaticity scale. This scale will be validated with
a series of well-known molecules (I-XIV ) and two recently
proposed aromatic molecules N5

- (XV)33 and B6CO6 (XVI )34

and then used on the new aluminum based clusters,XVII ,
whose aromatic properties have recently been described,35-38

and XVIII and XIX where the net aromaticity of both
systems has been a matter of recent controversy.22-24

We will show that the average between the two bifurcation
values provides a useful measure of the global aromatic
character of a molecular system.

Computational Details
The molecules in Chart 1 have been studied. All molecular
geometries were optimized at the B3LYP/6-31G(d) level of
theory using the GAUSSIAN9839 package of programs. The
π andσ orbitals were separated to form theπ andσ densities,
respectively. The separated ELF, ELFπ, and the ELFσ, were
constructed using the TopMod40 software. The visualization
of the isosurfaces and the bifurcation points were done using
the Vis5d41 program.

Results and Discussion
The σ-π separation of the ELF rest upon the additive
character of the kinetic energy and reflects the symmetry

properties of the molecular system. It is expected that the
main characteristics of theπ cloud should be reflected in
the ELFπ. In particular, a high value of bifurcation implies
that the minimum in the ELF is high and the respective basins
do not separate each other. Therefore, in this situation the
basins are correlated, and one can expect that the higher the
bifurcation value the more aromatic the system will be.

Table 1 displays the bifurcation ELFσ and ELFπ values
and their average for all the molecules considered in this
study. There are some clear trends worth commenting. For
the traditionalπ aromatic molecules (I to XI ), the sigma
bifurcation occurs at ELFσ values around 0.75 with small
deviations, and the ELFπ bifurcation values correspond
perfectly with the aromatic degree of the molecular systems
as was previously discussed.21 Notice that the antiaromatic
molecules (XII to XIV ) have a remarkable low bifurcation

Chart 1. Molecules Analyzed

Table 1. Bifurcation Values of ELFσ and ELFπ and Their
Average for All Molecules Analyzeda

molecules ELFσ ELFπ average

I 0.76 0.91 0.84
II 0.76 0.78 0.77
III 0.77 0.70 0.74
IV 0.75 0.64 0.70
V 0.76 0.75 0.76
VI 0.75 0.82 0.79
VII 0.74 0.69 0.72
VIII 0.76 0.72 0.74
IX 0.76 0.74 0.75
X 0.76 0.75 0.76
XI 0.77 0.71 0.74
XII 0.73 0.35 0.54
XIII 0.79 0.11 0.45
XIV 0.78 0.15 0.47
XV 0.81 0.78 0.80
XVI 0.68 0.85 0.77
XVII 0.88 0.99 0.94
XVIII 0.86 0.08 0.47
XVIII 0.86 0.41 0.64
XIX 0.87 0.24 0.56

a The two ELFπ bifurcation values of compound XVIII correspond
to the separation of the basins over and under the plane of the Al4
ring, respectively.
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ELFπ value. On the other hand, the metallic systems (XVIII
andXIX ) and the N5

- ion (XV ) present a high value of the
bifurcation ELFσ which is related to theirσ aromaticity. For
the last systems, the ELFπ bifurcation values show great
variations thereby reflecting the fact that some of them are
π antiaromatic (XVIII andXIX ). The opposite character of
theπ andσ parts of the Li3Al 4

- and Li4Al 4 metallic systems
has raised the question about the global aromatic or anti-
aromatic character of these clusters. In an attempt to bring
a new perspective to the point, the average value of the two
bifurcations for each molecule has been calculated. They are
displayed in the third column of Table 1. For the classic
organic compounds, one can clearly observe that the aromatic
molecules present values higher than 0.70 (I to XI ), and the
antiaromatic ones have values around 0.55 or lower (XII to
XIV ).

Using this range of values to classify the new systems,
XV , XVI , andXVII are clearly aromatic. The situation is
different for the Li3Al4

- ion (XVIII ). It presents two different
types of ELFπ bifurcation as can be seen in Figure 1. The
first bifurcation (0.08) corresponds to the separation of the
basins over the plane of the ring, and the other bifurcation
(0.41) is associated with the separation of the basins under
the plane of the ring. This is surely due to the asymmetric
capping of the lithium atom. Depending on which value one
takes, the average is 0.47 or 0.64. In both cases, the molecule
does not enter into the category of aromatic in the proposed
scale. However, to provide additional evidence, the sym-
metric Li4Al4 cluster (XIX ) has also been studied. The ELFπ

bifurcation is now well defined, as can be seen in Figure 1,
and has a low value of 0.24. The ELFσ bifurcation occurs at
a value of 0.87, and the average is 0.56, similar to the value
obtained for cycleoctatetraene (XII ), an antiaromatic mol-
ecule. It is interesting to note that this value is similar to the
average between the two bifurcation values for the Li3Al 4

-

ion (XVIII ).

Conclusions
The average value of the ELFσ and ELFπ bifurcations can
be used to construct a general scale to measure the aroma-
ticity of a molecular system. It works well for known organic
and metallic aromatic and antiaromatic systems. The pro-
posed scale predicts an overall antiaromatic character for the
controversial Al44--based clusters, built fromσ aromatic and
π antiaromatic contributions.
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Abstract: A simple mathematical model is derived for the dependence of the substituent effects

in the Cope rearrangements of substituted 1,5-hexadienes on the interallylic bond lengths in

the transition structures. The model qualitatively reproduces the cooperative substituent effects

that have been found in the Cope rearrangements of 2,5-diphenyl- and 1,3,4,6-tetraphenyl-1,5-

hexadiene and the competitive substituent effects that have been found in the Cope rearrange-

ment of 1,3,5-triphenyl-1,5-hexadiene. B3LYP/6-31G* calculations have been performed in order

to assess more quantitatively the performance of the model, and the results of these calculations

are discussed.

The effects of substituents on∆H‡ for the Cope rearrange-
ment1 can be either cooperative or competitive.2 For example,
as shown in Table 1, a single phenyl substituent at C2 lowers
∆H‡ for the Cope rearrangement of 1,5-hexadiene3 by 4.2
kcal/mol,4 but a second phenyl group, attached to C5, lowers
the experimental enthalpy of activation by 8.0 kcal/mol,
nearly twice as much.4,5 Clearly, there is a strong cooperative
effect between phenyl substituents at C2 and C5 on lowering
the barrier height.

Phenyl groups at C1, C3, C4, and C6 of 1,5-hexadiene
also give rise to a strongly cooperative substituent effect.
When one phenyl group is attached to C1 and another to
C3, the barrier to the Cope rearrangement is decreased by
3.0 kcal/mol from that for the unsubstituted molecule.6 If
the phenyl substituent effects on the Cope rearrangement
were additive, augmentation of the phenyl groups at C1 and
C3 by another pair at C4 and C6 would be anticipated to
lower ∆H‡ by another 3.0 kcal/mol. However, the measured
effect of the additional pair of phenyl groups is three times
larger, lowering∆H‡ for the Cope rearrangement by an
additional 9.2 kcal/mol.7 As in the case of phenyl substituents
at C2 and C5, the effect of phenyl substituents at C1, C3,
C4, and C6 of 1,5-hexadiene is obviously cooperative.

In contrast to the cooperative substituent effects described
above, placement of phenyl groups at C1, C3, and C5 of
1,5-hexadiene results in a competitive substituent effect.6 As
already noted, a single phenyl group at C2(C5) lowers∆H‡

by 4.2 kcal/mol, and phenyl groups at C1 and C3 lower∆H‡

by 3.0 kcal/mol. However, the simultaneous presence of
phenyl groups at C1, C3, and C5 lowers∆H‡ by 5.7 kcal/
mol, 1.5 kcal/molless than the 7.2 kcal/mol expected on
the basis of substituent effect additivity.

Table 1 shows that B3LYP/6-31G* calculations give
activation enthalpies for the Cope rearrangement of 1,5-
hexadiene8 and of phenyl-substituted derivatives2b that are
in very good agreement with experiment. This agreement
lends credibility to the calculated dependence in Table 1 of
the interallylic distance,R, in Cope transition structures (TSs)
on the number and placement of radical stabilizing, phenyl
substituents. Phenyl groups at C2 and C5, which can stabilize
diradical structureA in Figure 1, are predicted to shortenR,
whereas phenyls at C1, C3, C4, and C6, which stabilize
diradical structureC, are predicted to lengthenR.

Direct experimental evidence that the Cope rearrangement
has a variable TS, in which the bond lengths change with
the presence and placement of radical-stabilizing substituents,
comes from the secondary kinetic isotope effects, measured
by Gajewski and Conrad.9 Doering has coined the term
“chameleonic” to describe the Cope TS and the ability of

* Corresponding author e-mail: borden@unt.edu. Address cor-
respondence to Department of Chemistry, University of North
Texas, Box 305070, Denton, TX 76203-5070.
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the bond lengths in it to altar in response to radical stabilizing
substituents.5

In this paper we present a simple mathematical model for
the dependence of the energy of the Cope TS on the presence
and placement of radical stabilizing substituents. This model
is helpful for analyzing how the chameleonic character of
the Cope TS gives rise to the cooperative and competitive
substituent effects that are evident in the values of∆∆H‡ in
Table 1.

A Simple Mathematical Model for the Effects
of Substituents
The optimal value ofR, the interallylic distance in the TS
for the Cope rearrangement of a substituted 1,5-hexadiene,
can be viewed as a compromise between maximizing the

magnitude of the substituent stabilization energy of the TS
(∆Esubst)10 and minimizing the energetic cost (∆Edist) of
distorting the interallylic bond lengths in the TS from the
optimal value ofR0 () 1.965 Å at the B3LYP/6-31G* level)8

for the Cope rearrangement of unsubstituted 1,5-hexadiene.
Thus, the optimal value ofR maximizes the magnitude of
the net TS stabilization energy (∆Estab),10 which is the sum
of ∆Edist and∆Esubst.

The simplest possible mathematical model for finding this
value ofR assumes that the energy of theC2h structure in
the chair Cope rearrangement of unsubstituted 1,5-hexadiene
increases quadratically with the difference betweenR and
R0. The energy required to distort the interallylic distance
from R0 is then given by

A mathematical expression for∆Esubstcan be derived by
considering the effect of phenyl substituents at, for instance,
C1 and C3 on the energy of the high-symmetry chair
structure. Since radical stabilizing groups at C1 and C3 lower
the energy of structureC in Figure 1, they will have their
greatest effect at values ofR > R0, where the wave function
becomes increasingly like that for two allyl radicals. Con-
versely, the energy lowering provided by the phenyl sub-
stituents at C1 and C3 will decrease in size with decreasing
values ofR. Therefore, the leading term in the expression
for the effect of the interallylic distance on the stabilization
of the high-symmetry chair structure by phenyl groups at
C1 and C3 must be linear inR

where∆E0
subst is the stabilization provided by the phenyl

substituents atR0, andksubst is positive.

Thus, at least for values ofR aroundR0, the dependence
onRof the energy of the high-symmetry species in the chair
Cope rearrangement of 1,3-diphenyl-1,5-hexadiene can be
written as

where∆E0
stab) ∆E0

substis the substituent stabilization energy
at R0.

Differentiating eq 4 with respect toR, the high-symmetry
chair structure of minimum energy (i.e. the TS) for the Cope
rearrangement of 1,3-diphenyl-1,5-hexadiene is predicted to
occur at

Substituting the expression forR - R0 in eq 5 back into eq
4, the energy difference between the TS and the chair

Table 1. Effect of Phenyl Substituents on the Calculated
and Experimental Activation Enthalpies (kcal/mol) for the
Cope Rearrangements of Phenyl Substituted
1,5-Hexadienes and on the Differences (Å) between the
Calculated Interallylic Distance, R, in Each TS and R0 in
the TS for Unsubstituted 1,5-Hexadiene

substituents methoda
∆∆H‡

(calc.)
∆∆H‡

(exp.) R - R0
b

none B3LYP 0c 0d 0e

2-phenyl B3LYP -2.8 -0.128, -0.144
2-phenyl UB3LYP -2.9 -0.188, -0.265
2-phenyl UB3LYP -4.0f -4.2g -0.366
1,3-diphenyl B3LYP -3.0 -3.0h 0.253
2,5-diphenyl B3LYP -8.1 -0.171, -0.285
2,5-diphenyl UB3LYP -8.4 -0.126, -0.298
2,5-diphenyl UB3LYP -11.9f -12.2g,i -0.389
1,3,5-triphenyl B3LYP -4.0 -5.7h 0.148, 0.141
1,3,4,6-tetraphenyl B3LYP -14.1 -12.2j 0.684

a The 6-31G* basis set was used for all of the calculations in this
table. b Difference for, respectively, the forming bond in the TS and
the breaking bond, in the TS. Just one difference between the
interallylic bond lengths R and R0 is given for those TSs that have a
plane of symmetry. c Enthalpy relative to ∆H‡ ) 33.2 kcal/mol.
d Enthalpy relative to the value of ∆H‡ ) 33.5 kcal/mol, reported in
ref 3. e R0 ) 1.965 Å. f Enthalpy, relative to the reactant, of the
diradicaloid intermediate. g Reference 4. h Reference 6. i Reference
5. j Reference 7.

Figure 1. Depiction of possible TSs for the Cope rearrange-
ment. In the two diradical extremes bond making either
precedes (A) or lags behind (C) bond breaking, while in TS
B bond making and bond breaking occur synchronously. The
interallylic distance (R) is expected to increase in going from
TS A to TS C.

∆Estab) ∆Edist+ ∆Esubst (1)

∆Edist) kdist(R - R0)
2/2 (2)

∆Esubst- ∆E0
subst) -ksubst(R - R0) (3)

∆Estab- ∆E0
stab) ∆Edist+ ∆Esubst- ∆E0

subst

) kdist(R - R0)
2/2 - ksubst(R - R0) (4)

R - R0 ) ksubst/kdist (5)
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geometry atR ) R0 is given by

Eq 6 predicts that at the optimal value ofR

This relationship between∆Edist and (∆Esubst - ∆E0
subst)/2

is analogous to that in the virial theorem,11a with ∆Edist and
(∆Esubst - ∆E0

subst) in eq 7 corresponding, respectively, to
kinetic and potential energy.

If a second pair of phenyl substituents is added to 1,3-
diphenyl-1,5-hexadiene at C4 and C6, the second term in
eq 4 is multiplied by a factor of 2. The TS for the Cope
rearrangement is then predicted to have an interallylic
distance,R, such that

Upon increasingR from R0 to R0 + 2ksubst/kdist, the energy
of the C2h structure for the Cope rearrangement of 1,3,4,6-
tetraphenyl-1,5-hexadiene is predicted to decrease by

The net stabilization energy in eq 9 is four times larger in
magnitude than that in eq 6 for the chair TS for the Cope
rearrangement of 1,3-diphenyl-1,5-hexadiene. Thus, if∆E0

stab

in eqs 6 and 9 is small, the simple mathematical model in
eq 4 correctly predicts the existence of the cooperative
substituent effect in 1,3,4,6-tetraphenyl-1,5-hexadiene, whereby
the four phenyl substituents lower∆H‡ for the Cope
rearrangement by four times more than the pair of phenyl
substituents in 1,3-diphenyl-1,5-hexadiene.7

The origin of the cooperative effect, predicted by the
model, can be easily seen in eq 9. Doubling the number of
phenyl substituents doubles the number of radical stabilizing
groups that are positioned to stabilize structureC in Figure
1. In addition, doubling the number of phenyl substituents
is predicted by eq 8 to make the difference betweenR and
R0 in the TS twice as large for 1,3,4,6-tetraphenyl-1,5-
hexadiene (eq 8) as for 1,3-diphenyl-1,5-hexadiene (eq 5),
thus doubling the stabilization of the TS that is provided by
each phenyl group. Consequently, adding phenyl substituents
to C4 and C6 of 1,3-diphenyl-1,5-hexadiene is predicted to
quadruple∆Esubst - ∆E0

subst.
The doubling of R - R0 in the TS for the Cope

rearrangement of 1,3,4,6-tetraphenyl-1,5-hexadiene is also
predicted to quadruple∆Edist, which depends quadratically
onR- R0. Since doubling the number of phenyl substituents
quadruples both∆ER

subst - ∆E0
subst and ∆Edist, ∆Estab -

∆E0
stab in eq 9 for the Cope rearrangement of 1,3,4,6-

tetraphenyl-1,5-hexadiene is four times larger than∆Estab-
∆E0

stab in eq 6 for the Cope rearrangement of 1,3-diphenyl-
1,5-hexadiene.

Although the simple mathematical model, embodied in eq
4, apparently predicts the size of the cooperative substituent
effect in the Cope rearrangement of 1,3,4,6-tetraphenyl-1,5-
hexadiene2b,7 the model fails to predict correctly the calcu-
lated value ofR in the TS for this reaction. The model
predicts thatR - R0 in the TS for the Cope rearrangement
of 1,3,4,6-tetraphenyl-1,5-hexadiene (eq 8) should be twice
as large asR - R0 in the TS for the Cope rearrangement of
1,3-diphenyl-1,5-hexadiene (eq 5). However, Table 1 shows
the B3LYP/6-31G* ratio ofR - R0 values actually is 0.684/
0.253) 2.70, 35% higher than expected.

This failure of the model could reside in the assumption
that ∆Edist is quadratic over the difference of nearly 0.7 Å
betweenR0 andR in the TS for the Cope rearrangement of
1,3,4,6-tetraphenyl-1,5-hexadiene. However, another pos-
sibility is that relief of steric repulsion between the pairs of
phenyl groups at C1-C6 and C3-C4 in theC2h chair TS
geometry has the effect of makingksubst for 1,3,4,6-tetra-
phenyl-1,5-hexadiene more than a factor of 2 larger thanksubst

for 1,3-diphenyl-1,5-hexadiene. Results of calculations,
described in the next section, indicate that both effects
contribute to the ratio ofR - R0 values in the TSs for the
Cope rearrangements of these two dienes being 35% higher
than expected.

The simple model in eq 4 also fails to predict correctly
the ratio of R - R0 values in the TSs for the Cope
rearrangements of 2-phenyl- and 2,5-diphenyl-1,5-hexadiene.
Phenyl groups at C2 and C5 provide stabilization for structure
A in Figure 1. Consequently, they have their greatest
stabilizing effect at values ofR < R0, where the wave
function in the TS becomes increasingly like that for
cyclohexane-1,4-diyl. As a result, the sign of the right-hand
side of eq 3 is positive for 2-phenyl- and 2,5-diphenyl-
1,5-hexadiene. Therefore, for the Cope rearrangement of
2-phenyl-1,5-hexadiene, eq 3 must be replaced by

where, likeksubst, k′subst > 0.
The second phenyl group in 2,5-diphenyl-1,5-hexadiene

makes the expression for∆Esubst - ∆E0
subst a factor of 2

greater than the expression in eq 10 for 2-phenyl-1,5-
hexadiene. Thus, replacingksubst in eqs 4 and 8 by- k′subst,
the model again predicts a ratio of 2.0 forR - R0 in the
Cope TS for these two dienes. However, the UB3LYP/6-
31G* ratio is only-0.389/-0.366) 1.06.

The problem here is certainly the assumption in eq 2 that
∆Edist is quadratic. If the ratio ofR - R0 values really were
2.0, the UB3LYP value ofR ) 1.599 Å in the TS for the
Cope rearrangement of 2-phenyl-1,5-hexadiene would give
R ) 1.233 Å in the TS for the Cope rearrangement of 2,5-
diphenyl-1,5-hexadiene. This predicted bond length is about
0.3 Å shorter than the typical length of a C-C single bond.

If a Morse, rather than a quadratic potential is used, the
energy for compressing a C-C single bond to a length
substantially below 1.54 Å increases exponentially with

∆Estab- ∆E0
stab) ∆Edist+ ∆Esubst- ∆E0

subst

) kdist (ksubst/kdist)
2/2- ksubst(ksubst/kdist)

) ksubst
2/2kdist - ksubst

2/kdist

) -ksubst
2/2kdist (6)

∆Estab- ∆E0
stab) -∆Edist) (∆Esubst- ∆E0

subst)/2 (7)

R - R0 ) 2ksubst/kdist (8)

∆Estab- ∆E0
stab) kdist (2ksubst/kdist)

2/2- 2ksubst(2 ksubst/kdist)

) -2ksubst
2/kdist (9)

∆Esubst- ∆E0
subst) k′subst(R - R0) (10)
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decreasingR.11b Consequently, the assumption of a quadratic
potential for ∆Edist in eq 2 greatly underestimates the
energetic cost of decreasingR in the TS for the Cope
rearrangement of 2,5-diphenyl-1,5-hexadiene below the value
of R ) 1.599 Å in the TS for the Cope rearrangement of
2-phenyl-1,5-hexadiene.

Despite the failure of the simple model in eq 4 to predict
the size ofR in the TS for the Cope rearrangement of 2,5-
diphenyl-1,5-hexadiene, the model does predict the existence
of the cooperative effect of the pair of phenyl groups on the
enthalpy of activation.4,5 Assuming for 2-phenyl-1,5-hexa-
diene that

then

Since UB3LYP/6-31G* calculations find thatR is nearly
the same in the TSs for the Cope rearrangements of 2-phenyl-
and 2,5-diphenyl-1,5-hexadiene,∆Edist is approximately the
same for both TSs. However, due to the presence of two
phenyl groups in 2,5-diphenyl-1,5-hexadiene, the term for
∆Esubst - ∆E0

subst is a factor of 2 larger in the TS for the
latter reaction than in the TS for the former. Therefore, the
expression for∆Estab - ∆E0

stab in the latter reaction is

Comparison of eq 13 with eq 12 results in the prediction
that ∆Estab - ∆E0

stab should be a factor of 3 larger for the
Cope rearrangement of 2,5-diphenyl-1,5-hexadiene than for
the Cope rearrangement of 2-phenyl-1,5-hexadiene. Assum-
ing again that∆E0

stab is small, this prediction is consistent
with both the experimental and UB3LYP values of∆∆H‡

in Table 1.
The mathematical reason for the prediction, that∆Estab-

∆E0
stabshould be a factor of 3 larger for the Cope rearrange-

ment of 2,5-diphenyl-1,5-hexadiene than for the Cope
rearrangement of 2-phenyl-1,5-hexadiene, is that in eq 12
the first term, which gives∆Edist, cancels half of the second
term, which gives∆Esubst - ∆E0

subst. In eq 13 the term for
∆Edist is the same as in eq 12; but the term for∆Esubst -
∆E0

substis twice as large, which makes the difference between
these two terms three times larger in eq 13 than in eq 12.

In physical terms, the second phenyl group in 2,5-diphenyl-
1,5-hexadiene provides the same amount of TS stabilization
as the lone phenyl group in 2-phenyl-1,5-hexadiene. How-
ever, because the interallylic distances,R, in the two TSs
are nearly the same, the stabilization of the TS by the second
phenyl group comes without the energetic cost of (∆Estab-
∆E0

stab)/2, paid by the first phenyl group, for distortingR
from R0 in the TS for the Cope rearrangement of unsubsti-
tuted 1,5-hexadiene.

The simple mathematical model in eq 4 also accounts for
the competitive phenyl substituent effects, computed for2b

and found in5 the Cope rearrangement of 1,3,5-triphenyl-
1,5-hexadiene. Combining eqs 3 and 10 gives the expression
for ∆Esubst- ∆E0

subst in the TS for the Cope rearrangement
of this compound as

Substituting this expression for∆Esubst- ∆E0
subst into eq 4

and maximizing the magnitude of∆Estab gives

According to eq 15,R - R0 in the TS for the Cope
rearrangement of 1,3,5-triphenyl-1,5-hexadiene should be
equal to the algebraic sum ofR - R0 in the TS for 1,3-
diphenyl-1,5-hexadiene in eq 5 andR - R0 in the TS for
2-phenyl-1,5-hexadiene in eq 11. Using the B3LYP results
in Table 1,12 R - R0 ) 2.110- 1.965) 0.145 Å is, indeed,
reasonably close to the sum of 0.253- 0.136) 0.117 Å.

Upon increasing the interallylic distance fromR0 ) 1.965
Å to R ) R0 + (ksubst - k′subst)kdist, the net stabilization of
the TS for the Cope rearrangement of 1,3,5-triphenyl-1,5-
hexadiene is given by

∆Estab - ∆E0
stab in eq 16 is smaller in size than the sum of

the net stabilization energies of the TSs for the Cope
rearrangements of 1,3-diphenyl-1,5-hexadiene (eq 6) and
2-phenyl-1,5-hexadiene (eq 12) by

Thus, eq 17 predicts the existence of the competitive
substituent effect that is computed for and found in the Cope
rearrangement of 1,3,5-triphenyl-1,5-hexadiene.

In physical terms the existence of this effect is due to the
fact that phenyls at C1 and C3 provide the most stabilization
of the high-symmetry chair structure for the Cope rearrange-
ment atR > R0, whereas a phenyl group at C5 provides the
most stabilization atR < R0. At the compromise value ofR
in the TS for the Cope rearrangement of 1,3,5-triphenyl-
1,5-hexadiene, the phenyl groups at C1 and C3 provide less
stabilization than they do in the TS for the Cope rearrange-
ment of 1,3-diphenyl-1,5-hexadiene, and the phenyl group
at C5 provides less stabilization than it does in the TS for
the Cope rearrangement of 2-phenyl-1,5-hexadiene. This is
the origin of the competitive substituent effect in the Cope
rearrangent of 1,3,5-triphenyl-1,5-hexadiene.

Additional Computational Tests of the
Mathematical Model
The simple mathematical model in eq 4 predicts successfully
the existence of the cooperative and competitive phenyl
substituent effects, seen in Table 1, but only if the differences
between∆Estab- ∆E0

stabvalues, derived from the model, can

R - R0 ) -k′subst/kdist (11)

∆Estab- ∆E0
stab) kdist(-k′subst/kdist)

2/2+ k′subst(-k′subst/kdist)

) -k′subst
2/2kdist (12)

∆Estab- ∆E0
stab) kdist (-k′subst/kdist)

2/2

+ 2k′subst(-k′subst/kdist)

) -3k′subst
2/2kdist (13)

∆Esubst- ∆E0
subst) (k′subst- ksubst)(R - R0) (14)

R - R0 ) (ksubst- k′subst)/kdist

) ksubst/kdist - k′subst/kdist (15)

∆Estab- ∆E0
stab) -(ksubst- k′subst)

2/2kdist (16)

-(ksubst- k′subst)
2/2kdist + k′subst

2/2kdist

+ ksubst
2/2kdist ) ksubstk′subst/kdist (17)
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be equated with the∆∆H‡ values in Table 1. The apparent
success of the model thus suggests that substituent-induced
lengthening or shortening of the interallylic bond lengths
must be the dominant mode by which phenyl substituents
stabilize the Cope TS and thus lower the enthalpy of
activation for the Cope rearrangement.

∆Estab - ∆E0
stab ≈ ∆Estab in eqs 6, 9, 12, 13, and 16

requires that, at least for phenyl substituents,∆Estab. ∆E0
stab.

This means that the net substituent stabilization energies must
be much larger at the TS geometries than atR0, the
interallylic bond length in the TS for the Cope rearrangement
of unsubstituted 1,5-hexadiene.

To test whether∆Estabis, in fact, much larger than∆E0
stab,

we carried out electronic structure calculations. We also
computed∆Edist, the difference between the energy of the
Cope TS for unsubstituted 1,5-hexadiene atRand atR0. From
the difference between (∆Estab- ∆E0

stab) and∆Edist we were
able, using eq 4, to obtain (∆Esubst- ∆E0

subst). We were thus
able to test the predicted virial-theorem-like relationship in
eq 7 between∆Estab- ∆E0

stab, ∆Edist, and∆Esubst- ∆E0
subst.

As in our previous studies of Cope substituent effects,2

the electronic structure calculations utilized Becke’s 3-
parameter functional,13 in conjuction with the correlation
functional of Lee, Yang, and Parr14 and the 6-31G* basis
set.15 The B3LYP/6-31G* calculations were performed with
the Gaussian 98 suite of programs.16

The B3LYP values of∆Edist, ∆Esubst- ∆E0
subst, ∆Estab -

∆E0
stab, ∆E0

stab ()∆E0
subst), and∆Estab are given in Table 2

for the Cope rearrangements of 2-phenyl, 1,3- and 2,5-
diphenyl-, 1,3,5-triphenyl-, and 1,3,4,6-tetraphenyl-1,5-hexa-
diene. Because the values of∆Estabin Table 2 are uncorrected
for differences in zero-point energies or integrated heat
capacities, these values are similar to but not exactly the same
as the corresponding B3LYP values of∆∆H‡ in Table 1.

A number of observations can be made from inspection
of Table 2. First, atR0, the interallylic bond length in the TS
for the parent Cope rearrangement, a phenyl group at C2
provides∆E0

stab ) 1.7 kcal/mol of stabilization, which is
slightly more than twice the stabilization furnished by apair
of phenyl groups at C1 and C3. The larger amount of
stabilization provided by a single phenyl group at C2 supports
the conjecture, based on the relative enthalpies of the two
diradical extremes in Figure 1,2a that the TS for the Cope
rearrangement of unsubstituted 1,5-hexadiene resembles
cyclohexane-1,4-diyl (A) more than two allyl radicals (C).1,3

The values of∆E0
stabfor 2,5-diphenyl, 1,3,5-triphenyl, and

1,3,4,6-tetraphenyl substituents are each close to being the
sum of the appropriate∆E0

stab values for 2-phenyl and 1,3-
diphenyl substituents. It is noteworthy that, even for the
phenyl substituents in 2-phenyl- and 2,5-diphenyl-1,5-
hexadiene,∆E0

stab is only about one-third to one-quarter,
respectively, of∆Estab, the total net lowering by the substit-
uents of the energy of the Cope TS, relative to the energy
of the reactants.

The fact that substituents provide a comparatively small
amount of stabilization atR0 ) 1.965 Å was first found for
cyano, rather than for phenyl substituents.2a This finding is
consistent with the results of Staroverov and Davidson. They
used local spin analysis to show that not only does the TS
for the parent Cope rearrangement have little diradical
character17a but also that, at the geometry of this TS, radical
stabilizing substituents do little to enhance the diradical
character of the wave function.17b

Another observation, which can be made from the results
in Table 2, is that at the optimal values ofR for the
intermediate in the Cope rearrangement of 2-phenyl-1,5-
hexadiene and for the TSs in the Cope rearrangements of
1,3-diphenyl- and 1,3,4,6-tetraphenyl-1,5-hexadiene,∆Estab

- ∆E0
stab≈ -∆Edist ≈ (∆Esubst- ∆E0

subst)/2. These are the
relationships predicted by eq 6 under the assumption that
∆Edist is quadratic inR- R0. The least-squares plot in Figure
2 shows how well the equality between∆Estab- ∆E0

staband
-∆Edist holds for the Cope rearrangements of these three
dienes.

As discussed in the previous section, at small values of
R, ∆Edist is not quadratic inR - R0, and the intermediates in
the Cope rearrangments of 2-phenyl- and 2,5-diphenyl-1,5-
hexadiene have UB3LYP values ofR that differ by only
0.023 Å. Because the value ofR in the two intermediates is
nearly the same, the value of∆Esubst - ∆E0

subst ) -12.9
kcal/mol for the UB3LYP diradical intermediate in the Cope
rearrangement of 2,5-diphenyl-1,5-hexadiene is only about
a factor of 2 larger than∆Esubst- ∆E0

subst) -6.2 kcal/mol
for the UB3LYP diradical intermediate in the Cope re-
arrangement of 2-phenyl-1,5-hexadiene.

The fact thatR is nearly the same in the two diradical
intermediates has another consequencesupon adding a
second phenyl group to C5 of the diene, the approximate
doubling of ∆Esubst - ∆E0

subst occurs with an increase in
∆Edist of only 0.4 kcal/mol. Therefore, upon addition of a

Table 2. Dissection of the Effects of Phenyl Substituents on Lowering the Energy of the TS for the Chair Cope
Rearrangement of 1,5-Hexadienea

substituents R - R0 (Å) ∆Edist ∆Esubst - ∆E0
subst

b ∆Estab - ∆E0
stab ∆E0

stab
b ∆Estab

2-phenylc -0.366 3.3 -6.2 -2.9 -1.7 -4.6
2-phenyld 0.145 0.7 1.4 2.1 -1.7 0.4
2,5-diphenylc -0.389 3.7 -12.9 -9.2 -3.7 -12.9
1,3-diphenyl 0.253 2.0 -4.0 -2.0 -0.7 -2.7
1,3-diphenyld 0.145 0.7 -2.4 -1.7 -0.7 -2.4
1,3,5-triphenyl 0.145 0.7 -1.1 -0.4 -2.8 -3.2
1,3,4,6-tetraphenyl 0.684 12.0 -23.7 -11.7 -1.4 -13.1
1,3,4,6-tetraphenyle 0.253 2.0 -9.3 -7.3 -1.4 -8.7

a Energies (kcal/mol) were obtained from B3LYP/6-31G* calculations in the manner described in the text. b ∆E0
subst ) ∆E0

stab. c Values are
from UB3LYP calculations. d Calculations performed at, R ) 2.110 Å, the interallylic bond distance in the TS for Cope rearrangement of 1,3,5-
triphenyl-1,5-hexadiene. e Calculations performed at R ) 2.218, the interallylic bond distance in the TS for Cope rearrangement of 1,3-diphenyl-
1,5-hexadiene.
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second phenyl group at C5, the 6.3 kcal/mol increase in the
size of the net stabilization energy,∆Estab- ∆E0

stab, is only
0.4 kcal/mol less than the 6.7 kcal/mol increase in the size
of ∆Esubst - ∆E0

subst.
Because addition of a phenyl group to C5 of 2-phenyl-

1,5-hexadiene increases the magnitude of∆Estab - ∆E0
stab

in the diradical intermediate by 6.3 kcal/mol,∆Estab- ∆E0
stab

) -9.2 kcal/mol for 2,5-diphenyl-1,5-hexadiene is more than
a factor of 3 larger in magnitude than∆Estab - ∆E0

stab )
-2.9 kcal/mol for 2-phenyl-1,5-hexadiene. However, as
expected, the ratio of∆E0

stab values for the two dienes is
only about two. Therefore, the ratios of their∆Estab values
in Table 2 and their∆∆H‡ values in Table 1 are each a little
less than a factor of 3.

When a pair of phenyl substituents is added to C1 and C3
of 1,5-hexadiene, the value ofR in the TS increases by 0.253
Å. However, when a second pair of phenyls is added to C4
and C6 of 1,3-diphenyl-1,5-hexadiene, the value ofR in the
TS increases by 0.431 Å, a 70% larger increase than for
addition of the first pair of phenyl groups. Consequently, in
the TS for the Cope rearrangement of 1,3,4,6-tetraphenyl-
1,5-hexadiene the substituent stabilization energy,∆Esubst-
∆E0

subst) -23.7 kcal/mol, is not a factor of 4, but a factor
of about 6 larger in size than∆Esubst- ∆E0

subst) -4.0 kcal/
mol in the TS for the Cope rearrangement of 1,3-diphenyl-
1,5-hexadiene.

When a second pair of phenyl groups is added to C4 and
C6 of 1,3-diphenyl-1,5-hexadiene, but the interallylic distance
is frozen at the value ofR ) 2.218 Å in the TS for the Cope
rearrangement of the disubstituted diene, Table 2 shows that
∆Esubst - ∆E0

subst ) -9.3 kcal/mol. This increase in the
magnitude of∆Esubst- ∆E0

substis 30% more than the factor
of 2 that is expected for doubling the number of phenyl
substituents at a fixed value ofR. It seems likely that the
1.3 kcal/mol of extra stabilization comes from a reduction
in the steric repulsion between the pairs of phenyl groups at
C1-C6 and C3-C4 upon increasingR by 0.253 Å fromR0

) 1.965 Å in the TS for the parent Cope rearrangement to
R ) 2.218 Å in the TS for the Cope rearrangement of 1,3-
diphenyl-1,5-hexadiene.

The hypothesis, that steric repulsion between phenyl
groups is relieved by lengtheningR in the TS for the Cope

rearrangement of 1,3,4,6-tetraphenyl-1,5-hexadiene, is also
consistent with the fact thatR - R0 ) 0.684 Å in the TS for
this reaction. As already noted, this change in interallylic
bond lengths is a factor of 2.7 greater thanR - R0 ) 0.253
Å in the TS for the Cope rearrangement of 1,3-diphenyl-
1,5-hexadiene, rather than the expected factor of 2.0.

However, the fact that∆Edist is not quadratic out toR )
2.649 Å also contributes to the ratio of the changes in
interallyic bond lengths being larger than the ratio of 2.0
expected from eq 8. Table 2 shows that∆Edist ) 2.0 kcal/
mol for lengtheningR by 0.253 Å fromR0 ) 1.965 in the
TS for the Cope rearrangement of unsubstituted 1,5-hexa-
diene toR ) 2.218 Å in the TS for the Cope rearrangement
of 1,3-diphenyl-1,5-hexadiene. If∆Edist were quadratic inR
- R0, ∆Edist ) 14.6 kcal/mol would be expected for
lengtheningR by 0.684 Å fromR0 ) 1.965 toR ) 2.649 Å
in the TS for the Cope rearrangement of 1,3,4,6-tetraphenyl-
1,5-hexadiene. However, as Table 2 shows, the actual value
of ∆Edist ) 12.0 kcal/mol in the latter TS.

Upon increasing the interallylic distance fromR ) 2.218
Å to R ) 2.649 Å, ∆Edist increases by 10.0 kcal/mol, and
this energy increase cancels all but 4.4 kcal/mol of the
increase of 14.4 kcal/mol in the magnitude of∆Esubst, the
substituent stabilization energy. Therefore, of the 9.7 kcal/
mol increase in the magnitude of∆Estab- ∆E0

stabthat results
from adding a pair of phenyl groups to C4 and C6 of the TS
for the Cope rearrangement of 1,3-diphenyl-1,5-hexadiene,
5.3 kcal/mol (55%) comes from the two additional phenyl
groups increasing the magnitude of∆Esubstat R ) 2.218 Å,
and the remainder comes from the 4.4 kcal/mol increase in
the size of the difference between∆Esubst and ∆Edist as R
increases from 2.218 Å to 2.649 Å.

The data in Table 2 are useful for a detailed understanding
of not only the cooperative substituent effects, which have
been both observed in and computed for the Cope rearrange-
ments of 2,5-diphenyl- and 1,3,4,6-tetraphenyl-1,5-hexadiene
(Table 1), but also of the competitive substituent effect in
the Cope rearrangement of 1,3,5-triphenyl-1,5-hexadiene.5

Table 2 shows that atR - R0 ) -0.366 Å the C2 phenyl
group in 2-phenyl-1,5-hexadiene provides a net stabilization
of ∆Estab- ∆E0

stab) -2.9 kcal/mol, and atR - R0 ) 0.253
Å the C1 and C3 phenyl groups in 1,3-diphenyl-1,5-
pentadiene provide a net stabilization of∆Estab- ∆E0

stab)
-2.0 kcal/mol. However, as discussed in the previous
section, the Cope rearrangement of 1,3,5-triphenyl-1,5-
pentadiene occurs at a compromise TS geometry withR -
R0 ) 0.145 Å. At this TS geometry, neither the phenyl groups
at C1 and C3 nor the phenyl group at C5 provide as much
net stabilization as these phenyl groups furnish in the TSs
for the Cope rearrangements of, respectively, 1,3-diphenyl-
1,5-pentadiene atR - R0 ) 0.253 Å and 2-phenyl-1,5-
hexadiene atR - R0 ) -0.366 Å.

Table 2 reveals that atR - R0 ) 0.145 Å the C2 phenyl
group in 2-phenyl-1,5-hexadiene provides 2.1 kcal/mol less
net stabilization than atR0 ) 1.965 Å and 5.0 kcal/mol less
net stabilization than atR - R0 ) -0.366 Å. AtR ) 2.110
Å the C1 and C3 phenyl groups in 1,3-diphenyl-1,5-
pentadiene provide 1.7 kcal/mol more stabilization that at

Figure 2. Linear least-squares plot of ∆Estab - ∆E0
stab vs

-∆Edist for 2-phenyl-, 1,3-diphenyl-, and 1,3,4,6-tetraphenyl-
1,5-hexadiene.
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R0 ) 1.965 Å but 0.3 kcal/mol less stabilization than atR -
R0 ) 0.253 Å.

Thus, assuming additivity, one might expect the three
phenyl groups in 1,3,5-triphenyl-1,5-pentadiene would pro-
vide 5.3 kcal/mol less net TS stabilization than the total
amount they furnish in the Cope rearrangements of 1,3-
diphenyl-1,5-pentadiene and 2-phenyl-1,5-hexadiene. In fact,
Table 2 shows that∆Estab ) 3.2 kcal/mol for the Cope
rearrangement of 1,3,5-triphenyl-1,5-hexadiene, a value that
is 4.1 kcal/mol smaller in magnitude than the sum of the
∆Estab values for the Cope rearrangements of 2-phenyl-1,5-
pentadiene and 1,3-diphenyl-1,5-pentadiene.

This difference between the∆Estab values in Table 2 is
1.1 kcal/mol larger than the difference of 4.0+ 3.0- 4.0)
3.0 kcal/mol between the calculated∆∆H‡ values in Table
1 and 2.6 kcal/mol larger than the difference of 4.2+ 3.0-
5.7) 1.5 kcal/mol between the experimental∆∆H‡ values.

The biggest contributor to making the difference of 3.0
kcal/mol between the calculated∆∆H‡ values 1.5 kcal/mol
larger than the difference between the experimental∆∆H‡

values is the fact that the calculated value of∆∆H‡ for the
Cope rearrangement of 1,3,5-triphenyl-1,5-hexadiene is 1.7
kcal/mol smaller in size than the experimental value.
Nevertheless, the calculated and experimental∆∆H‡ values
in Table 1 both show that the substituent effects in the Cope
rearrangement of this compound are competitive.

Summary and Conclusions
The simple mathematical model in eq 4 assumes that radical
stabilizing substituents attached to 1,5-hexadiene prefer
interallylic bond lengths,R, in the TS for the Cope re-
arrangement that allow the substituents to provide the greatest
amount of stabilization energy (∆Esubst) for the TS and that
the leading term in∆Esubst is linear in R. The model also
assumes that lengthening or shortening these bonds from the
preferred value,R0, in the TS for the Cope rearrangement
of unsubstituted 1,5-hexadiene results in an energy increase
(∆Edist) that is quadratic in the difference betweenR andR0.
Minimization of the net stabilization energy,∆Estab) ∆Edist

+ ∆Esubst, gives the expression in eq 5 for the optimal value
of R in the TS for the Cope rearrangement of a substituted
1,5-hexadiene.

At this value ofR, eq 6 predicts a relationship between
∆Esubst - ∆E0

subst, the difference between the substituent
stabilization energies atR and R0, and ∆Edist that is
reminiscent of the relationship between potential and kinetic
energy in the virial theorem. The results of B3LYP/6-31G*
calculations show that the predicted relationship between
∆Esubst- ∆E0

substand∆Edist does, in fact, hold in the TSs for
the Cope rearrangement of several phenyl-substituted 1,5-
hexadienes.

B3LYP calculations also show that the effect of phenyl
substituents on stabilizing the Cope TS is much smaller at
R0 than at the optimal value ofR. Therefore, the major
mechanism by which phenyl substituents lower∆H‡ for the
Cope rearrangement is to increase the magnitude of∆Esubst

by distorting the interallylic bond lengths in the TS fromR0

to R. The dependence of∆Esubst on R is what gives rise to

the cooperative substituent effects, both calculated and
observed, in the Cope rearrangements of 2,5-diphenyl- and
1,3,4,6-tetraphenyl-1,5-hexadiene and to the competitive
substituent effect, both calculated and observed, in the Cope
rearrangement of 1,3,5-triphenyl-1,5-hexadiene.
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Abstract: Density Functional Theory (DFT) calculations produce optimized geometries of the

complexes [Re(CO)3(bpy)Cl] (1), [Re(CO)3(bpy)(py)](CF3SO3) (2), [Re(CO)3(bpy)(CNx)](CF3-

SO3) (3), and [Re(CO)(bpy)(CNx)3](CF3SO3) (4), where bpy ) 2,2′-bipyridine, py ) pyridine,

and CNx ) 2,6-dimethylphenylisocyanide in their ground and lowest-lying triplet states. The

ground-state optimized geometry for the cation of [Re(CO)3(bpy)(CNx)](CF3SO3) (3) results in

a Re-C (CNx) bond length of 2.10 Å, a Re-C (CO) bond length trans to CNx of 2.01 Å, and

a Re-C (CO) bond length cis to CNx of 1.96 Å which compares favorably to the single-crystal

analysis of a Re-C (CNx) bond length of 2.074(4) Å, a Re-C (CO) bond length trans to CNx

of 1.971(4) Å, and Re-C (CO) bond length cis to CNx of 1.932(4) Å. The majority of the singlet

excited-state energies calculated using Time-dependent Density Functional Theory (TDDFT)

and Conductor-like Polarizable Continuum Model (CPCM) are metal-ligand-to-ligand charge

transfer (MLLCT) states and are in good agreement with the UV-vis spectral energies for the

complexes in ethanol. The complexes exhibit emission both at room temperature and at 77 K

except 4 which is only emissive at 77 K. The 77 K emission lifetimes range from 3.9 µs for 1 to

8.8 µs for 3. The emissive lowest-lying triplet state is a 3MLLCT state for complexes 1-3 but a

triplet ligand-to-metal charge transfer (3LMCT) state for complex 4. The electronic, electrochemi-

cal, thermodynamic, HOMO-LUMO, and emitting-state energy gaps as well as the emission

lifetimes increase in the order 1 < 2 < 3. A 3d-d excited- state, which is located above the
3LMCT state, accounts for the loss of room-temperature emission for complex 4.

Introduction
Density Functional Theory (DFT) is very useful for inter-
pretation of electrochemical and spectroscopic results. A
linear relationship between the HOMO-LUMO energy gap
and the electrochemical redox potentials for a series of
isoelectronic Ru(II) diimine complexes was reported from
our laboratory.1 DFT calculations on the ground and metal-

to-ligand charge transfer (MLCT) states of a series of Re(I)
tricarbonyl complexes were used by others for the investiga-
tion of the excited-state geometries and electronic structures.2-4

Time-dependent density functional theory (TDDFT) calcu-
lated MLCT states and UV-vis spectra correlations were
also reported for Re(I) complexes containing the ligand azo-
phenine.4 The TDDFT method when used alone treats mole-
cules in the gas phase; therefore, the method does not always
give the right electronic excited-state energies in solution.5,6a

We have reported that combining the TDDFT with the
conductor-like polarizable continuum model (CPCM) yields
calculated singlet excited-state energies that correlate quite
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† Wichita State University.
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§ Texas A & M University.
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well with the UV-vis absorption energies of [Ru(bpy)2-
(CNx)Cl]+ in a series of seven solvents of varied polarity.6b

According to other reports, the tandem use of TDDFT and
CPCM has produced dramatic changes in the energies and
the assignments of the singlet excited-states for Ru(II) and
Os(II) polypyridyl complexes.7 It is the primary method used
in our study.

The synthesis, photochemistry, and computational studies
of 2,6-dimethylphenylisocyanide (CNx) complexes of Re(I)
and Ru(II) have been recently reported by our group.8

Generally, Re(I) diimine tricarbonyl complexes arefacial,
MLCT emitters and have broad and structureless emission
bands which are sensitive to changes in the nature of the
environment.9-11 Thus variations in the structure of the non-
carbonyl bidentate as well as the ancillary ligands could
produce considerable effects on luminescence energies,
lifetimes, and quantum yields. Here we report computational,
electronic absorption, and excited-state emission studies of
a series of Re(I) bipyridine complexes, [Re(CO)3(bpy)Cl]
(1), [Re(CO)3(bpy)(py)](CF3SO3) (2), [Re(CO)3(bpy)(CNx)]-
(CF3SO3) (3), and [Re(CO)(bpy)(CNx)3](CF3SO3) (4). The
photophysical properties of the two new complexes contain-
ing the CNx ligand, [Re(CO)3(bpy)(CNx)]+, and [Re(CO)-
(bpy)(CNx)3]+ are compared to similar properties of two
more conventional complexes, [Re(CO)3(bpy)Cl] and [Re-
(CO)3(bpy)(py)]+. The study is focused on the electronic
effect of the CNx ligand on the molecular geometry and
UV-vis and IR spectra of the Re(CO)3(bpy) moiety using
computational and experimental methods.

Experimental Section
Materials. The ligand 2,6-dimethylphenylisocyanide was
purchased from Fluka. Re(CO)5Cl, 2,2′-bipyridine, and
pyridine were purchased from Aldrich. Optima grade metha-
nol was purchased from Fischer Scientific, while acetonitrile
was purchased from Sigma-Aldrich. AAPER Alcohol and
Chemical Company was the source of absolute ethanol.
Ethanol and methanol were used in a 4:1 (v/v) mixture to
prepare solutions for the emission and emission lifetime
studies. Elemental analyses were obtained from Desert
Analytics Laboratory, Tucson, AZ.

Instrumentation and Physical Measurements.UV-vis
spectra were obtained using a Hewlett-Packard model 8452A
diode array spectrophotometer. The IR spectra were acquired
using a Nicolet Avatar 360 FT-IR spectrophotometer. Proton
NMR spectra were obtained using a Varian Mercury 300
FT-NMR spectrometer. An EG&G PAR model 263A po-
tentiostat/galvanostat was used to obtain the cyclic voltam-
mograms. The measurements were carried out in a typical
H-cell using a platinum disk working electrode, a platinum
wire counter electrode, and a Ag/AgCl reference electrode
in acetonitrile. The supporting electrolyte used was 0.1 M
tetrabutylammonium hexafluorophosphate (TBAH). Fer-
rocene was added for reference.

The sample preparation for emission studies involved
dissolving a small amount of sample (∼2 mg) in the
appropriate solvent, and the absorbance of the solution was
measured. The concentration of the solution was altered in
order to achieve an absorbance of about 0.10 at lowest energy

transition. Such a concentration provides enough material
for data acquisition but excludes self-quenching processes.
A 3-4 mL aliquot of the solution was then placed in a 10
mm diameter Suprasil (Heraeus) nonfluorescent quartz-tube
equipped with a tip-off manifold. The sample was then
freeze-pump-thaw degassed for at least three cycles (to
approximately 75 milliTorr) removing any gases from the
sample. The manifold was then closed, and the sample was
allowed to equilibrate at room temperature. The solvent
evaporation was assumed to be negligible; therefore, the
concentrations were assumed to remain constant throughout
this procedure. The corrected emission spectra were collected
using a Spex Tau3 Fluorometer.

The emission quantum yields were then calculated using
eq 1, whereφx is the emission quantum yield of the sample
andφstd is the emission quantum yield for the standard ([Ru-
(bpy)3]2+), Astd andAx represent the absorbance after degas-
sing the standard and the sample, respectively, whileIstd and
Ix are the integrals of the emission envelope of the standard
and the sample, respectively.12

The excited state lifetimes were determined by exciting
the sample at the lowest energy transition (usually MLCT)
using an OPOTEK optical parametric oscillator pumped by
a frequency tripled Continuum Surlite Nd:YAG laser run at
∼20 mJ/10 ns pulse. The oscilloscope control and data curve
fitting analysis was accomplished using the Origin 6.1
program by OriginLab Corporation. The excited state lifetime
experiments were conducted as previously published.13

X-ray Crystallography Data Collection. A Bausch and
Lomb 10× microscope was used to identify a suitable color-
less plate from a representative sample of crystals of [Re(bpy)-
(CO)3(CNx)](PF6) grown by slow evaporation of ethanol.
The crystal was coated in a cryogenic protectant (paratone)
and was then fixed to a loop which in turn was fashioned to
a copper mounting pin. The mounted crystal was then placed
in a cold nitrogen stream (Oxford) maintained at 110 K.

A BRUKER SMART 1000 X-ray three-circle diffracto-
meter was employed for crystal screening, unit cell deter-
mination, and data collection. The goniometer was controlled
using the SMART software suite, version 5.056 (Microsoft
NT operating system). The sample was optically centered
with the aid of a video camera such that no translations were
observed as the crystal was rotated through all positions. The
detector was set at 5.0 cm from the crystal sample (CCD-
PXL-KAF2, SMART 1000, 512× 512 pixel). The X-ray
radiation employed was generated from a Mo sealed X-ray
tube (KR ) 0.70173 Å with a potential of 50 kV and a current
of 40 mA) and filtered with a graphite monochromator in
the parallel mode (175 mm collimator with 0.5 mm pinholes).

Dark currents were obtained for an exposure time of 30 s.
A rotation exposure was taken to determine crystal quality
and the X-ray beam intersection with the detector. The beam
intersection coordinates were compared to the configured co-
ordinates, and changes were made accordingly. The rotation
exposure indicated acceptable crystal quality, and the unit cell
determination was undertaken. Sixty data frames were taken
at widths of 0.3° with an exposure time of 10 s. Over 200 re-

φx) (Astd/Ax)(Ix/Istd)φstd (1)
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flections were centered, and their positions were determined.
These reflections were used in the auto-indexing procedure
to determine the unit cell. A suitable cell was found and re-
fined by nonlinear least squares and Bravais lattice proce-
dures and reported here in Table 1. The unit cell was verified
by examination of thehkl overlays on several frames of data,
including zone photographs. No super-cell or erroneous
reflections were observed.

After careful examination of the unit cell, a standard data
collection procedure was initiated. This procedure consisted
of a collection of one hemisphere of data using omega scans,
involving the collection of 1201 0.3° frames at fixed angles
for φ, 2θ, andø (2θ ) -28°, ø ) 54.73°), while varying
omega. Each frame was exposed for 30 s and contrasted
against a 30 s dark current exposure. The total data collection
was performed for duration of approximately 13 h at 110
K. No significant intensity fluctuations of equivalent reflec-
tions were observed.

After data collection, the crystal was measured carefully
for size, morphology, and color. These measurements are
reported in Table 1.

(1) Preparation of fac-[Re(bpy)(CO)3Cl]. The synthesis
of the complex was carried out following a previously
published procedure.14a,b Yield 1.34 g (94%). Anal. Calcd
for ReC13H8N2O3Cl: C, 33.81; H, 1.75; N, 6.07. Found: C,
34.00; H, 1.65; N, 6.04. IR (KBr pellet): 2022, 1890, 1653,
1600, 1559, 1471, 1444, 1314, 1245, 1070, 764, 732, 647,
536 cm-1. 1H NMR (DMSO): δ ppm 7.76 (dd, 2H,J )
0.9, 6.8 Hz), 8.35 (dd, 2H,J ) 1.5, 7.7 Hz), 8.77 (d, 2H,J
) 8.4 Hz), 9.02 (dd, 2H,J ) 0.9, 5.5 Hz).

(2) Preparation of fac-[Re(bpy)(CO)3(py)](CF3SO3).
The synthesis of the complex was carried out following a
previously published procedure.14b,c Yield 0.25 g (88%).
Anal. Calcd for ReC19H13N3O6FS: C, 34.86; H, 2.00; N,
6.42. Found: C, 34.92; H, 1.82; N, 6.43. IR (KBr pellet):
2026, 1906, 1603, 1491, 1473, 1448, 1279, 1260, 1147, 1030,
776, 735, 700, 637, 573, 534 cm-1. 1H NMR (DMSO): δ
ppm 7.42 (dd, 2H,J ) 1.2, 7.2 Hz), 7.90 (dd, 2H,J ) 1.2,
6.5 Hz), 7.95 (t, 1H,J ) 7.8), 8.39 (m, 4H), 8.69 (d, 2H,J
) 8.4 Hz), 9.31 (dd, 2H,J ) 1.2, 5.7 Hz).

(3) Preparation of fac-[Re(bpy)(CO)3(CNx)](CF3SO3).
A 0.19 g sample of CNx (1.4 mmol) was added to a 100
mL round-bottomed flask containing 0.83 g of [Re(CO)3-
(bpy)(CF3SO3)] (1.4 mmol) in 50 mL of absolute ethanol.
The mixture was refluxed for 6 h. The solvent was
evaporated in vacuo until about 5 mL of the solution was
left in the flask. The remaining solution was added dropwise
into 100 mL of ether with constant stirring. The dark yellow
precipitate was removed by filtration and dried in a vacuum.
Yield: 1.00 g (98%). Anal. Calcd for ReC23H17N3SF3O6: C,
39.10; H, 2.42; N, 5.95. Found: C, 40.40; H, 2.44; N, 5.68.
IR (KBr pellet): 2173, 2036, 1955, 1603, 1473, 1443, 1279,
1224, 1152, 1033, 1025, 790, 638, 488 cm-1. 1H NMR
(DMSO): δ ppm 1.98 (s, 6H), 7.17 (d, 2H,J ) 7.8 Hz),
7.28 (t, 1H,J ) 6.9 Hz), 7.85 (dd, 2H,J ) 1.2, 6.8 Hz),
8.43 (dd, 2H,J ) 1.5, 8.1 Hz), 8.86 (d, 2H,J ) 7.8 Hz),
9.16 (d, 2H,J ) 4.2 Hz).

(4) Preparation of mer-[Re(bpy)(CO)(CNx)3](PF6). A
0.10 g sample of mer-[Re(CNx)3(CO)2Cl]15 (0.15 mmol) was
added to 0.05 g of AgPF6 (0.20 mmol) and 0.03 g of 2,2′-
bipyridine (0.18 mmol) in a 125 mL round-bottomed flask.
About 75 mL of ethanol was added, and the solution was
refluxed in the dark overnight. The solution was filtered to
remove the solid AgCl, and the filtrate was evaporated to
dryness. An orange solid was recovered, washed with ether,
and dried under vacuum. Yield 0.11 g (81%). Anal. Calcd
for ReC38H35N5OPF6: C, 50.21; H, 3.88; N, 7.71. Found:
C, 50.41; H, 4.00; N, 7.90. IR (KBr pellet): 2072, 1885,
1658, 1590, 1468, 1439, 842, 774, 557, 491 cm-1. 1H NMR
(DMSO): δ ppm 2.43 (s, 18H), 7.29 (m, 9H), 7.48 (dd, 2H,
J ) 0.9, 5.7 Hz), 7.97 (dd, 2H,J ) 1.8, 8.1 Hz), 8.40 (dd,
2H, J ) 0.9, 8.1 Hz), 8.70 (dd, 2H,J ) 1.8, 4.5 Hz).

Results
Synthesis.The preparation of the complexes followed the
scheme shown in Figure 1. Complexes1 and2 were prepared
by modifying published procedures.14 Complex 1 was
synthesized by reacting [Re(CO)5Cl] with bpy in ethanol,
and it served as the starting material for complexes2 and3.
The chloro ligand was first removed from the coordination
sphere by reaction of [Re(bpy)(CO)3Cl] with AgCF3SO3 to
precipitate AgCl generating the intermediate [Re(bpy)(CO)3-
(CF3SO3)]. Complex 2 was produced when py replaced
CF3SO3

- in the coordination sphere. Similarly, upon addition
of CNx to a solution containing [Re(bpy)(CO)3(CF3SO3)],
complex3 was obtained. The PF6

- salt of complex3 was
also prepared by first reducing the volume of the solvent
using a rotary evaporator and then adding NH4PF6 to
precipitate the product.

Table 1. Crystal Data for [Re(bpy)(CO)3(CNx)](PF6), 3

formula C22H17F6N3O3PRe
formula weight 702.56
crystal size, mm 0.30 × 0.20 × 0.05
crystal system monoclinic
space group P2(1)/n
a, Å 8.9203(18)
b, Å 12.925(3)
c, Å 21.104(4)
R, deg 90
â, deg 90.521(13)
γ, deg 90
V, Å3 2433.2(8)
Z 4
density (calculated), g cm-1 1.918
absorption coefficient, mm-1 5.135
F(000) 1342
θ range for data collection,

deg
1.85 to 28.30

index ranges -11e he 11, -17e ke16,
-20e le 28

reflections collected 22815
independent reflections 5719 [R(int) ) 0.0287]
completeness to θ 94.7%
max. and min. transmission 0.7833 and 0.3080
goodness-of-fit on F2 1.184
final R indices [I > 2σ(I)] R1 ) 0.0279, wR2 ) 0.0748
R indices (all data) R1 ) 0.0319, wR2 ) 0.0868
largest difference peak

and hole, e Å-3
2.435 and -0.681
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Complex 4 was prepared by a different route. The
precursor complex,mer-[Re(CNx)3(CO)2Cl], was prepared
using a modification of a previously published procedure.15

This complex was refluxed with AgPF6 and bpy in ethanol
in the dark overnight to produce the desired product. The
complexes were characterized by IR,1H NMR, and elemental
analysis. The structure of the PF6

- salt of complex3 was
determined by X-ray crystallography.

X-ray Crystal Structure Determination of fac-[Re-
(CO)3(bpy)(CNx)](PF6) (3). The structure of3 was deter-
mined by X-ray crystallography and is shown in the ORTEP
diagram of Figure 2. The crystal data are listed in Table 1,
while selected bond distances and angles for the complex
are given in Table 2.

The complex adopted a distorted octahedral geometry with
the equatorial plane defined by the bipyridine ligand and two
carbonyl groups trans to it and the axial ligands defined as
a carbonyl group with a CNx ligand opposite it. The angles
of the trans ligands at the metal center were 177.33(15)° for
C(1)-Re(1)-C(4), 173.56(15)° for C(2)-Re(1)-N(3), and
174.05(15)° for C(3)-Re(1)-N(2). The Re-N bond lengths
were similar within experimental error, 2.17( 0.01 Å, as
well as the Re-C (CO) bond distances, 1.93( 0.02 Å, in
the equatorial positions. However, the Re-C (CO) bond
length of CO trans to the CNx ligand was considerably longer
by ∼0.04 Å compared to the other two Re-C (CO) bond
distances. The longest Re-C bond distance was 2.074(4) Å
to the CNx ligand.

Electronic Absorption Studies.The electronic absorption
properties of the complexes were studied at room temperature
in 4:1 ethanol/methanol as solvent. Molar absorption coef-
ficients (ε) were determined from Beer’s Law plots using at
least five dilution points. The probable assignments of these
bands were made on the basis of the documented optical
transitions of similar Re(I) complexes9,16,17and the compu-
tational assignment of the singlet excited-states (vide infra).
The results are listed in Table 3.

The lowest energy transition of the complexes was
assigned as metal-ligand-to-ligand charge transfer (MLLCT),
while those at higher energies were assigned as the intrali-
gandπ f π* transitions. The MLLCT absorption peaks of
the series occurred in the following order:4 (26 200 cm-1)
< 1 (26 900 cm-1) < 3 (27 000 cm-1) < 2 (28 600 cm-1).
In addition to the optical transition for3 located at 27 000
cm-1, another one was found at 30 300 cm-1. It is important
to note that since the MLLCT band occurs as a broad
shoulder, the exact position of the band maximum as well
as the extinction coefficient were subject to error.

The intraligandπ f π* transitions were located in the UV
region of the spectrum. As expected, the molar absorptivities
of the electronic transitions associated with the CNx ligand8b

(33 000 and 42 000 cm-1) increased as the number of coor-
dinated CNx ligands increased from one in3 to three in4.

Electrochemical Studies.The redox potentials of the
series of complexes were determined using cyclic voltam-

Figure 1. Schematic diagram of the synthesis of the com-
plexes.

Figure 2. ORTEP diagram of [Re(bpy)(CO)3(CNx)]+, 3.

Table 2. Selected Bond Length (Å) and Angles (deg) for
[Re(bpy)(CO)3(CNx)](PF6), 3

Re(1)-C(1) 1.971(4) C(1)-Re(1)-C(4) 177.33(15)
Re(1)-C(2) 1.932(4) C(2)-Re(1)-N(3) 173.56(15)
Re(1)-C(3) 1.927(4) C(3)-Re(1)-N(2) 174.05(15)
Re(1)-C(4) 2.074(4) O(1)-C(1)-Re(1) 178.5(4)
Re(1)-N(2) 2.171(3) O(2)-C(2)-Re(1) 178.0(4)
Re(1)-N(3) 2.169(3) O(3)-C(3)-Re(1) 177.5(4)
N(1)-C(4) 1.161(5) N(1)-C(4)-Re(1) 175.8(3)
O(1)-C(1) 1.136(5) C(4)-N(1)-C(15) 171.2(4)
O(2)-C(2) 1.151(5)
O(3)-C(3) 1.147(5)
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metry. The electrochemical properties of the complexes are
listed in Table 4. Irreversible oxidation waves attributed to
the Re(I)f Re(II) process increased in potential in the order
1 < 2 < 3 for [Re(CO)3(bpy)Cl] (1), [Re(CO)3(bpy)(py)]+

(2), and [Re(CO)3(bpy)(CNx)]+ (3). The single reduction
observed for1-3 was attributed to the reduction of the bpy
ligand.

The electrochemical behavior of [Re(CO)(bpy)(CNx)3]+

(4) differed from the others. It underwent a quasi-reversible
oxidation (∆Ep ) 0.09 V) at 1.30 V attributed to the Re(II/
I) couple. Further, a reduction normally associated with
coordinated bpy was absent. The oxidation of4 was shifted
to a lower potential compared to the other three complexes.

Emission Properties and Excited-State Lifetimes.The
emission properties and excited-state lifetimes of the com-
plexes were studied both at room temperature and at 77 K.
The results are given in Table 5. Complexes1-3 were
emissive both at room temperature and at 77 K. Complex4
however was nonemissive at room-temperature but was
highly emissive at 77 K.

The emission lifetimes (τem) increased in the order1 < 2
< 3 both at room temperature and at 77 K as Cl in1 was
replaced with py in2 and CNx in3. The emission quantum
yield (φem) also increased from 0.0052 for1 to 0.10 for2
and 0.27 for3. It is worthy to note thatφem determined at
room temperature for complex3 was more than three times
higher thanφem of the standard complex [Ru(bpy)3]2+ under
the same experimental conditions. Theφem of complex2 was
also slightly higher than the standard under the same
conditions. At 77 K, complex4 produced an intense,
structureless emission peak centered at 20 600 cm-1.

Computational Section
The singlet ground-state geometries of the complexes1-4
were optimized in the gas phase using the B3LYP18

functional of the Gaussian ’0319 program package. The
Stuttgart-Dresden (SDD) ECP20 was used for the Re core
potentials. The{(8s7p6d)/[6s5p3d]}-GTO was applied for
the valence shell of Re together with the all-electron 6-311G*

Table 3. Experimentala Electronic Transitions and Calculatedb,c Excited State Energies of Re(I) Complexes

complex
Eexp, × 103 cm-1,

ε (M-1 cm-1) Ecalc, × 103 cm-1 assignment

[Re(bpy)(CO)3Cl] 26.9 (3900) 25.0 MLLCT
34.2 (15 200) 34.1 LC (π f π*)
41.7 (16 400) (s)d LC (π f π*)

[Re(bpy)(CO)3(py)](CF3SO3) 28.6 (4400) 27.4 MLLCT
31.2 (13 300) MLLCT
32.7 (12 300) 32.8 MLLCTe

37.9 (18 800) 37.4 MLLCTe

40.0 (19 200) 39.7 MLLCT
[Re(bpy)(CO)3(CNx)](CF3SO3) 27.0 (2300) (s)d 26.8 MLLCT

31.6 (22 700) 31.5 MLLCT
32.9 (21 800) 32.6 MLLCT
38.5 (49 300) 37.9 MLLCTe

[Re(bpy)(CO)(CNx)3](PF6) 26.2 (7000) (s)d 26.7 MLLCT
29.1 (22 000) (s)d 29.0 MLLCT
32.7 (53 000) (s)d 32.8 MLLCT
34.0 (59 000) 34.3 MLLCT
42.0 (45 000) LC (π f π*)

a In 4:1 (v/v) ethanol:methanol. b In ethanol. c Only singlet excited-states with f > 0.05 are considered. d s ) shoulder. e Mixed state.

Table 4. Electrochemical Properties of the Complexes in
CH3CN at Room Temperature

complex E1/2 (ox), Va E1/2 (red), Va

[Re(bpy)(CO)3Cl]b 1.32d -1.35
[Re(bpy)(CO)3(py)](CF3SO3) 1.78d -1.18b

[Re(bpy)(CO)3(CNx)](CF3SO3) 1.99d -1.22
[Re(bpy)(CO)(CNx)3](PF6) 1.30e

[Ru(bpy)3]2+(c) 1.27f -1.31
-1.50
-1.77

a Potential in volts vs SSCE (scan rate ) 250 mV/s). b Data from
ref 14. c Data from ref 13. d Irreversible oxidation wave. e Quasi-
reversible oxidation wave. f RuIII/II redox couple.

Table 5. Calculated 3MMLCT State Energiesa and Emission Properties of the Complexes at 77 K and Room Temperatureb,f

complexes Ecalc

Eexp

77 K
Eexp

RT
τem, µs
77 K

τem, µs
RT

æem
d

RT

[Re(bpy)(CO)3Cl]c 20.6 19.2 16.8 3.9 0.037 0.0052
[Re(bpy)(CO)3(py)](CF3SO3)c 21.4 20.2 18.0 5.4 0.33 0.10
[Re(bpy) (CO)3(CNx)](CF3SO3) 21.9 22.2 19.3 8.8 1.22 0.27

20.9
19.6 (s)e

18.0 (s)e

[Re(bpy)(CO)(CNx)3](PF6) 21.4 20.6 6.3
a In ethanol. b In 4:1 ethanol/methanol. c Emission properties were also reported in CH2Cl2 in refs 9 and 14. d Relative to [Ru(bpy)3]2+ (ref

13). e (s) ) shoulder. f Energies in × 103 cm-1.
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basis set21 for Cl, O, N, C, and H atoms. Selected parameters
of the optimized geometry of complex3 are presented in

Table 6. The optimized geometries of the complexes are
listed in Supporting Information Table S1.

Nonequilibrium TDDFT22/CPCM23 calculations were em-
ployed to produce a number of singlet excited-states24 of
complexes1-4 in ethanol based on the singlet ground-state
geometry optimized in the gas phase.25 The output contained
information for the excited-state energies and oscillator
strengths (f) and a list of the excitations that give rise to
each excited state, the orbitals involved as well as the wave
function coefficients of the excitations. The singlet excited-
states of the four complexes are presented in Figure 3 as
vertical bars with height equal to the extinction coefficient
calculated from the oscillator strength.5,6

The lowest-lying triplet state geometries of the four
complexes were calculated using unrestricted B3LYP in the
gas phase. The spin contamination from states of higher
multiplicity was low. The value of〈S2〉 was 2.010 for1, 2.012
for 2, 2.018 for3, and 2.017 for4. The energies of the lowest-
lying triplet states were higher than these of the correspond-
ing ground states by 20 600 cm-1 for 1, 21 400 cm-1 for 2,
21 900 cm-1 for 3, and 16 800 cm-1 for 4 (Table 7 and
Figure 4). The lowest-lying triplet states were3MLLCT states
and featured single HOMO and LUMO occupancy.

A number of triplet excited-states were computed based
on the3MLLCT state geometry for the four complexes. The
four low-lying triplet excited-states are listed in Table 7 and
shown in Figure 3, even if thef value is low. These excited
states were used for the interpretation of the temperature-
dependent emission properties of the complexes.

Vibrational analysis was performed using B3LYP for the
ground-state optimized geometries of the four complexes.
The frequencies of the most intense vibrations are presented
in Table 8.

Table 6. Selected Geometry Parameters of 3 Based on Calculated Singlet Ground and Lowest-Lying Triplet State
Geometries and X-ray Crystallography

source
Re-N2,

Å
Re-C4,

Å
Re-C1,

Å
Re-C2,

Å
N1-C4,

Å
C1-O1,

Å
C2-O2,

Å
Re-C4-N1,

deg
Re-C1-O1,

deg
C4-N1-C15,

deg

X-ray 2.171(3) 2.074(4) 1.971(4) 1.932(4) 1.161(5) 1.136(5) 1.151(5) 175.8(3) 178.5(4) 171.2(4)
singlet 2.23 2.10 2.01 1.96 1.17 1.14 1.15 177.8 179.6 178.4
triplet 2.16 2.09 2.06 1.99 1.17 1.13 1.14 179.1 179.9 178.7

Table 7. Calculated Triplet Excited-States of Complexes
1-4 in Ethanol Based on the Lowest-Lying Triplet State
Geometrya

state f ψo f ψv type EVER

Complex 1
1 0.00 H-2 f H (1.0) Red, CO f Red, Cl 22.9
2 0.00 H-3 f H (1.0) bpy f Red, Cl 25.8
3 0.01 H-1 f H (1.0) Red, Cl f Red, Cl 27.0
4 0.02 L f L+2 (0.8) bpy f bpy 32.6

L f L+4 (0.6) bpy f del

Complex 2
1 0.00 H-2 f H (1.0) Red, CO f Red, CO 24.8
2 0.00 H-3 f H (1.0) bpy f Red, CO 25.5
3 0.02 H-1 f H (1.0) Red, CO f Red, CO 26.7
4 0.00 L f L+1 (1.0) bpy f py 32.1

Complex 3
1 0.00 H-2 f H (1.0) Red, CO f Red, CNx 25.8
2 0.00 H-4 f H (1.0) bpy f Red, CNx 26.2
3 0.04 H-1 f H (0.9) Red f Red, CNx 26.5
4 0.00 H-3 f H (1.0) CNx f Red, CNx 31.9

Complex 4
1 0.00 H-3 f H (1.0) CNx f Red, CNx 21.4
2 0.00 H-2 f H (0.8) Red, CNx f Red, CNx 22.0

H-1 f H (0.6) Red, CNx f Red, CNx
3 0.00 L f L+1 (1.0) bpy f CNx 24.2
4 0.01 H-1 f H (0.8) Red, CNx f Red, CNx 26.0

H-2 f H (0.5) Red, CNx f Red, CNx
a EVER is the energy of the vertical transition in ×103 cm-1, f is the

oscillator strength, and ψo and ψv are the occupied and the virtual
orbitals that define the transition. The transition type is determined
based on the change in the spatial distribution from occupied to virtual
orbital. The absolute value of the transition coefficient for each
transition is given in parentheses. H ) HOMO, L ) LUMO, and del
) delocalized. (See text for calculation details.)

Table 8. Calculated and Experimental Vibrational IR Frequencies (cm-1) for the Four Complexesa

1 2 3 4

calc. exp. calc. exp. calc. exp. calc. exp. assignment

2173 2173 2084 2072c ab

2037 2022 2061 2026 2065 2036 1950 1885 bb

1964 sh 1989 sh 2013 sh bb

1939 1890 1977 1906 1992 1955 bb

1608 1603 1597 1603 1603 1590 cb

1466 1471 1484 1448 1467 1473 1468 1468 db

757 764 765 776 763 790 761 774 eb

634 647 629 637 623 638 589 557 fb

496 488 488 491 gb

a The calculated values were factored by 0.975. b a ) CN stretch, b ) CO stretch, c ) CNx or py ring breathing modes, d ) bpy ring
breathing modes, e ) out-of-plane H (bpy) vibrations, f ) symmetric CO bending, and g ) CNx vibrations. c Calculated vibrational frequencies
at 2154 and 2099 cm-1 correspond to shoulders near the experimental peak at 2072 cm-1.
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Discussion
X-ray Structure. As noted in the results section, [Re(CO)3-
(bpy)(CNx)]+ (3) adopted a distorted octahedral geometry.

The increase in Re-C (CO) bond distance of 0.04 Å
compared to the other two Re-C (CO) bond distances is a
result of the trans effect resulting from the strongσ donating
character of the CNx ligand to the metal center. The bond
elongation of CO trans to the CNx ligands of 0.04 Å was
analogous to that reported for the [Ru(bpy)2(CNx)2](PF6)2

by our group where the Ru-N (bpy) trans to CNx was 0.03
Å longer than for Ru-N (bpy) cis to CNx.8a

In a related X-ray crystallographic study, the Re-C (L)
distance in cis-[ReCl(CO)3L2] (L ) 2,6-diisopropyl-4-
acetyleno-phenylisocyanide)26 was 2.092(5) Å, or 0.02 Å
longer than the Re-C (CNx) distance found for [Re(CO)3-
(bpy)(CNx)](PF6). The Re-C (CO trans to L) distance of
1.973(6) Å was the same as Re-C (CO trans to CNx) in
this report. However for Re-C with CNx trans to CNx, the
bond distance for [Re(CNx)5Cl] was only 2.019(7) Å8b

compared to 2.074(4) Å for [Re(CO)3(bpy)(CNx)]+. The
Re-C (CNx) distance was longer by 0.12 Å than the Ru-C
(CNx) distance in [Ru(bpy)2(CNx)2](PF6)2.8a This may be
due to the larger ionic radius of Re(I).

Molecular Orbitals. The molecular orbital energy diagram
for the four complexes in ethanol is shown in Figure 5. The
HOMO, HOMO-1, and HOMO-2 of complexes1-4 con-
tained 50% or higher Red character. The remaining contribu-
tion was from the nonimine ligands. Additionally, for
complex 1, the HOMO and HOMO-1 contained equal
contributions (∼20% for each) from the CO and Cl moieties,
whereas HOMO-2 contained 23.5% CO but less than 1%
Cl character. The HOMO, HOMO-1, and HOMO-2 for
complex 2 contained∼20% CO character and negligible
imine ligand contributions. For complex4, the HOMO,
HOMO-1, and HOMO-2 contained more than 23% CNx
ligand contributions while the CO contributions were low.
The HOMO of complex3 contained∼32% CNx ligand
contribution, whereas the HOMO-1 and HOMO-2 contained
18% or higher CO character (the CNx ligand contribution
was less than 7%). The LUMOs contained 80% or higher
bpy ligandπ* character (Figure 6). The LUMOs+1 were
located on the bpy and py ligands for complexes1 and2,

Figure 3. Experimental absorption spectra of 1-4 and cal-
culated singlet excited-states. The excited states are shown as
vertical bars with height equal to the extinction coefficient.5a

Black ) MLLCT, green ) LLCT, blue ) π f π*, red )
MCDCT, orange ) Red, CNx f Res and (O‚‚‚‚‚‚‚‚O) ) mixed
excited-state.

Figure 4. Triplet excited-state energy diagram for complexes
1-4.

Re(I) Bipyridyl Complexes J. Chem. Theory Comput., Vol. 1, No. 1, 2005101



respectively, and on the CNx ligands for complexes3 and
4. The percent orbital contributions are listed in Supporting
Information Table S2.

The schematic diagrams of the HOMO and the LUMO
for the four complexes are shown in Figure 6. The HOMOs
contained more than 50% Red character and the remaining
contributions were almost evenly distributed among the
nonimine ligands, whereas the LUMOs were on the bpy
ligand. The HOMO-LUMO energy difference increased
from 29 800 cm-1 for complex1, to 31 000 cm-1 for 2, and
32 000 cm-1 for 3. The HOMO-LUMO energy gap for
complex4 was only 25 000 cm-1.

Geometry Optimization of 3. Selected parameters of the
optimized geometry of complex3 in the singlet ground and
lowest-lying triplet states are listed in Table 6, next to the
results of the X-ray structure determination. The singlet
ground-state bond lengths and bond angles presented are in
general agreement with the experimental values. The Re-N
distances were overestimated by∼0.05 Å and the Re-C

(CO and CNx) distances by∼0.03-0.04 Å. The C4-N1-
C15 angle was 178.4° in comparison to the 171.2° found
experimentally. The elongation of the Re-C (CO trans to
CNx) bond relative to Re-C (CO cis to CNx) was confirmed
computationally. It was due to the electron-donating effect
of the isocyanide ligand (vide infra). The deviation of the
experimental value from 180° could be a result of crystal
packing effects. These results obtained with one of the largest
basis sets appear satisfactory despite the shortcomings
associated with the calculation of the metal-ligand bond
lengths using B3LYP functional.5,6a

The geometry of complex3 in the 3MLLCT state was
slightly different from the ground-state geometry. The
differences listed in Table 6 can be interpreted using the mol-
ecular orbital schematic diagram shown in Figure 6. The Re-
N2 distance decreased from 2.23 to 2.16 Å in the triplet
relative to the singlet ground state. This bond shortening
could be due to the mixing between the Re dπ HOMO and
the bpyπ* LUMO in the lowest-lying triplet state as reported
for fac-[Re(bpy)(CO)3(4-ethylpyridine)]+.2a The Re-C1 and
Re-C2 distances increased by 0.05 Å and 0.03 Å, respec-
tively. The bonding character of the HOMO with respect to
the Re-C (CO) bonds could account for these bond elonga-
tions in the triplet state. The bonding and antibonding char-
acter was determined by visual examination of the phases of
the molecular orbital for each diagram. The phases are related
to the spatial distributions of alpha (R) and beta (â) electron
densities27 shown in red and blue colors, respectively.

Mulliken Charges. Mulliken charges were calculated for
the singlet ground-state geometry, and the solvent effect of
ethanol was accounted for using CPCM. The changes in the
Mulliken charge of the metal atom can be used for the
evaluation of the electron-donating power of the ligands.8a

The Re charge lowering can be expressed as follows: Recalc

) Re1-ΣnL, where n is the number of coordinated atoms from
ligand L. The relative electron-donating power of CNx was
0.08 as determined from the 0.54 charge on Re8b for [Re-
(CNx)6]+ using the following mathematical relationship,
Re0.54∼ Re1-6×0.08. Analogously, the electron-donating power
of CO was determined to be 0.11 based on a residual charge
of 0.34 on Re28 for [Re(CO)6]+. For [Re(CO)3(bpy)(CNx)]
the donating power of each coordinated N atom was
determined to be-0.05 from the following: Re0.81 ∼
Re1-3×0.11-3(-0.05). The electron donating power of the ligands
for Re(I) can be arranged as follows CO> CNx > N. When
these electron donating powers are used to calculate the
predicted Re charge produced for complexes3 and 4, the
values obtained were in good agreement with the DFT
computed values. For complexes3 and 4 the above
approach produced Re1-3×0.11-1×0.08-2×(-0.05) ) Re0.69 and
Re1-1×0.11-3×0.08-2×(-0.05)) Re0.75compared to 0.67 and 0.73,
respectively, from DFT. The Re charge in complex1 was
0.56. However, Mulliken charge analysis of the donating
power of the chloro ligand for complex1 was not performed
due to concerns of properly accounting for the negative
charge on the chloro ligand by the CPCM method.

The donating power of CNx and N (imine) is greater for
Ru(II) (CNx ) 0.32; N) 0.1)8a than for Re(I) (CNx) 0.08;
N ) -0.05), but in both cases the contribution of CNx>

Figure 5. Molecular orbital energy diagram for six occupied
and six virtual frontier orbitals of 1-4 in the singlet ground
state in ethanol.

Figure 6. HOMO and LUMO schematic diagrams for com-
plexes 1-4.
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N. Also the contribution of each to Re(I) is smaller than to
Ru(II). Perhaps the differences are due to the initial charges
of the complexes, but more examples are needed to unravel
the trends.

Electrochemical Behavior.The electronic effects of the
CNx ligand were evident in the electrochemical results as
listed in Table 4. The redox potentials of importance are those
derived from the processes involving the HOMOs which
contained primarily Re dπ orbitals and the LUMOs which
contained theπ* orbital located on the bpy ligand. Hence,
oxidation involves the removal of an electron from Re
(HOMO) and reduction involves the addition of an electron
to the bpyπ* orbital (LUMO).

The reduction potentials were assigned based on the
energies and spatial distributions of the LUMO (Figure 5).
The potential for the single reduction of the bpy ligand
increased from-1.35 V for 1 to -1.22 V for 3 and-1.18
V for 2. The reduction potentials of complexes1-3 were
linearly dependent on the DFT calculated LUMO energies
as shown in Figure 7. The slope of the line was-2.0 ((0.1)
compared to-2.32 reported for a series of 10 isoelectronic
Ru(II) diimine complexes.1

The oxidation potentials however, which varied consider-
ably across the series, were all irreversible and increased
from 1 to 3. The energy gap between the HOMO and the
LUMO increased in the order1 < 2 < 3. The potential
differences (Eox - Ered) follow the same order as the room-
temperature emission maxima. The results indicated the
parallel relationship between the thermodynamic and elec-
tronic energy gaps.29,30The fact that3 has the highest energy
gap compared to1 and2 indicated the strong influence of
the CNx ligand on the system.

Singlet Excited-States and Electronic Absorption Spec-
tra. The singlet excited-states of complexes1-4 with f >
0.01 are shown in Figure 3 as vertical bars with height equal
to the extinction coefficient. The bars are presented in colors
that correspond to the type of singlet excited-state as
follows: black) MLLCT, green) LLCT, blue) π f π*,
orange) Red,CNx f Res, and red) MCDCT (metal-to-
complex-delocalized charge transfer). These assignments
were made based on the major contributing excitation. The

singlet excited-states had contributions from several excita-
tions. For those presented with solid bars there was one major
contributing excitation (with a transition coefficient for the
major excitation being higher than the transition coefficient
of the other excitations by more than 0.2). For some singlet
excited-states, however, there was more than one contributing
excitation with high transition coefficients. Singlet excited-
states that contained contributions from several excitations
with transition coefficients that were within 0.2 of the major
excitation transition coefficient are assigned as mixed singlet
excited-states and are presented with the vertical bars
symbolized asO‚‚‚‚‚‚‚‚O.

The excited states of complex1 were mostly of MMLCT
type. All of the MLLCT states were associated with transi-
tions that originated from the HOMO, HOMO-1, and
HOMO-2 that contained Red, Cl, and CO contributions. The
excited state at 34 900 cm-1 with the highestε involved equal
contributions from bpyπ f π* and an MLLCT state. Two
degenerate Clf bpy excited-states were computed at 36 300
cm-1. The singlet excited-states of complex2 were assigned
as Red,COf bpy and Red,COf py states, or MLLCT states.
Excited states 4 and 7 (shown with the notationO‚‚‚‚‚‚‚‚O
in Figure 3) contained significant bpyπ f π* contributions.
The majority of the singlet excited-states of complex3 were
MLLCT states. In addition, there were twoπ f π* states,
one involving the bpy ligand and the other involving the
CNx ligand. The singlet excited-state at 39 900 cm-1 was
due to three excitationssa CNx ligandπ f π*, MMLCT,
and a CNxf bpy with transition coefficients of 0.4, 0.3, and
0.3, respectively. This state was labeled asπ f π* according
to the assignment of the major excitation and is shown in
Figure 3 as a blue vertical line symbolized asO‚‚‚‚‚‚‚‚O.
For complex4, the singlet excited-states below 32 000 cm-1

were mainly of MLLCT character. The singlet excited-state
at 35 200 cm-1 was assigned as LLCT (CNxf bpy). Two
CNx π f π* states were calculated at 39 400 and 39 700
cm-1. The higher CNx ligand contribution to the frontier
molecular orbitals and the smaller HOMO-LUMO gap for
complex4 compared to1-3 resulted in an increase in the
number of singlet excited states calculated in the energy
range 28 000-32 000 cm-1. These excited states correlated
well with the experimental peak broadening and the merging
of the LC and MLLCT peaks in complex4. The singlet
excited-states are listed in Supporting Information Table S3.

The calculated singlet excited-state energies correlated well
with the experimental UV-vis peaks in the same solvent
(Figure 3 and Table 3). For complex1, the MLLCT singlet
excited-state at 25 000 cm-1 is 1900 cm-1 lower in energy
relative to the position of the broad UV-vis peak at 26 900
cm-1, whereas the bpyπ f π* excited-state at 34 100 cm-1

is 100 cm-1 lower than the most intense experimental peak
at 34 200 cm-1. For complex2 the MLLCT excited-state at
27 400 cm-1 was 1200 cm-1 lower in energy compared to
the UV-vis peak at 28 600 cm-1. The mixed excited-states
at 32 800 and 37 400 cm-1 were within 500 cm-1 from the
UV-vis peaks at 32 700 and 37 900 cm-1, respectively.
These states were assigned as MLLCT but contained
significant π f π* character. For complex4, the singlet
excited-states of 32 800 cm-1 and 34 300 cm-1 were blue-

Figure 7. Linear dependence of E1/2(red) and the LUMO
energies for complexes 1-3.
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shifted by 100 cm-1 and 300 cm-1 relative to the experi-
mental peaks at 32 700 and 34 000 cm-1, respectively. The
excited states were of MLLCT type. For complexes2-4,
the agreement between the calculated and experimental data
was remarkable. The experimental peaks at energies higher
than 40 000 cm-1 were assigned asπ f π* states according
to the conventional assignment. Simulation of the singlet ex-
cited-states into Gaussian line shapes and subsequent integra-
tion, following a procedure previously reported5a (not shown),
did not correlate well with the UV-vis spectrum curvature.
The use of the TDDFT/CPCM method is known to produce
optical energies in good agreement with the experimental
absorption spectra. The oscillator strengths calculated using
TDDFT/CPCM method were higher than both the experi-
mental values determined in the respective solvent and the
calculated values in the gas phase for a series of ruthenium-
(II) polypyridyl complexes containing CNx ligand.6b,8a In
another study, thef values computed in 2-methyltetrahydro-
furane solution using the TDDFT/PCM method were also
significantly higher than the experimental values in the same
solvent and the calculated values in the gas phase.31

Triplet Excited-States.Four triplet excited-states for each
of the complexes1-4 were computed in ethanol based on
the3MLLCT geometry and are listed in Table 7. The major
excitations in these states had transition coefficients higher
than 0.8. The three lowest-lying triplet excited-states for com-
plexes1-3 involved excitations to the rhenium and nonimine
ligand centered HOMO (Figure 6). These states were pure,
with the transition coefficients of the major excitations of 1.0.
Excited state 4 for complexes1 and2 involved excitations
from the LUMO (bpy) to LUMO+2 (bpy) and LUMO+1
(py), respectively. In complex4 each of the triplet excited-
states 2 and 4 involved two excitations of the same type.

The relative energies of the triplet excited-states are presen-
ted in the schematic diagram in Figure 4. The excited states
that involved occupied and virtual molecular orbitals with more
than 50% Re contribution were assigned as3d-d states, where-
as states that involved ligand-to-metal charge-transfer excita-
tions, like states 2 for complexes1-3, were assigned as
3LMCT states. The energies of the3MLLCT states increase
from 20 600 cm-1 for 1, 21 400 cm-1 for 2, and 21 900 cm-1

for 3 following the same trend as the experimental emission
energies of 19 200 cm-1 for 1, 20 200 cm-1 for 2, and 22 200
cm-1 for 3 at 77 K. Above the3MLLCT states were3d-d
states and3LMCT states for complexes1-3. The3MLLCT
state of complex4 was only 16 800 cm-1 above the ground
state, and the3LMCT state at 21 400 cm-1 was only 200
cm-1 lower than the experimental emission energy at 77 K.
The3LMCT is then assigned as the emitting state for complex
4. The thermal population of the3d-d state at 22 000 cm-1

accounts for the loss of room-temperature emission of com-
plex 4.

The3d-d and3LLCT states were obtained via single elec-
tron vertical excitations from the3MLCT states and the ex-
cited-state energies reported were not the minima.32 The3d-d
transitions are symmetry forbidden33 and have very low oscil-
lator strengths (Table 7). The role of the3d-d states in
quenching room-temperature emission is discussed in the
succeeding section.

Recent study suggests that the addition of diffuse functions
to double-ú basis sets can improve the effectiveness of DFT
for the calculations of reaction and conformation energies of
butadiene and 1,2-ethanediol.34aIn a TDDFT/PCM study the
6-311++G** basis set is utilized for a more complete de-
scription of the mixing between the valence and Rydberg
excite states of acrolein.34b Further studies on the effects of
the addition of diffuse functions to double and triple-ú basis
sets for the calculation of excited-state energies are needed and
have the potential of improving the results presented here.

Vibrational Analysis. The vibrational frequencies for the
four complexes were calculated, factored35 by 0.975, and
listed in Table 8. The most distinct and intense calculated
frequencies were correlated with the experimental results.
The C≡N and CdO stretching modes were among the most
pronounced peaks. Excellent agreement was obtained be-
tween the calculated and the experimental values of the C≡N
stretching frequencies for complexes3 and4. For complex
4, there were three C≡N stretching modes calculated but
only the one at 2072 cm-1 was resolved experimentally. The
calculated frequencies at 2154 and 2099 cm-1 corresponded
to the shoulders on both sides of the experimental peak at
2072 cm-1. Three CdO stretching frequencies were calcu-
lated for each of the complexes1-4 and correlated with the
experimental values. The assignment of the three CdO
frequencies for each of the complexes1-3 was limited by
the experimental resolution. Both the experimental and the
calculated CdO stretching modes shifted to higher frequen-
cies in the order1 < 2 < 3. The higher vibrational frequency
of 3 was anticipated based on the electron-donating power
of the CNx ligand. The calculated values were higher than
the experimental by 30 cm-1-75 cm-1. The calculated ring
breathing and symmetric CdO bending modes correlated
well with the experimental values. In the low energy range
of the spectrum an intense vibration was located. According
to the computational results this involved the vibration of
the CNx ligand with respect to the rest of the complex. The
vibrational frequency of CNx for3 was computed at 496
cm-1, compared to the experimental value of 488 cm-1. For
complex4, three CNx specific vibrations were expected, but
only one was resolved experimentally. The coordinated CNx
ligand vibrations occurred∼20 cm-1 lower in frequency than
the corresponding modes in [Ru(bpy)2(CNx)Cl]+, [Ru(bpy)2-
(CNx)(py)]2+, and [Ru(bpy)2(CNx)2]2+.8a This shift is likely
due to the heavier Re atom.

Emission Properties and Excited-State Lifetimes.The
room-temperature emission spectra of complexes1-3 com-
pared to [Ru(bpy)3]2+ are shown in Figure 8A. The 77 K
emission spectra of complexes1-4 are presented in Figure
8B. Complex4 was nonemissive at room temperature. The
emission maxima of the complexes at 77 K are blue-shifted
compared to that at room temperature.

Figure 9 shows a model diagram that will aid in discussing
the observed emission properties and excited-state lifetimes
of the complexes in the series. It shows the three states
involvedsground state,3MLCT, and 3LC (triplet ligand-
centered state) both at room temperature and at 77 K. In
this case, the3MLCT state is taken to be essentially
temperature dependent. Hence, the energy gap between the
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emitting triplet state at room temperature is smaller than at
77 K resulting in the observed blue shift of the emission
maxima at 77 K relative to room temperature. At room
temperature, the emitting state is the3MLCT, which is
equilibrated with respect to the solvent environment and

geometry of the complex. The reorientation of the solvent
cage is fast compared to the rate of deactivation of the
emitting state. The trend of increasing emission energies and
excited-state lifetimes in the order3 > 2 > 1 is in accord
with the energy gap law. The thermodynamic and the
electronic energy gaps increase parallel to each other in the
above order as has been previously reported.17

Conclusion
Four Re(I) bipyridyl complexes were investigated using
spectroscopic methods and DFT calculations. The results
were correlated and revealed the following: (1) The elec-
tronic, electrochemical, thermodynamic, HOMO-LUMO,
and emitting state energy gaps as well as the emission
lifetimes and3MLLCT energies increased in the order1 <
2 < 3. (2) The electron-donating power of the CNx ligand
was evaluated, and its effect on the computed optimized
geometry parameters, singlet excited states, and CdO
vibrational frequencies was correlated with the experimental
results from X-ray crystallography and UV-vis and IR
spectroscopies. (3) The three complexes (1-3) were emissive
both at room temperature and at 77 K. (4) The complexes
showed reversible reduction but irreversible oxidation waves.
(5) The LUMO energies were linearly dependent on the
reduction potentials of complexes1-3. (6) Complex4 was
nonemissive at room temperature but showed intense emis-
sion at 77 K with a lifetime of 6.3µs which is longer than
5.4 µs for complex2 but shorter than the 8.8µs for 3. A
low-lying 3d-d state was responsible for the loss of room-
temperature emission in4. The complex showed a reversible
oxidation but no reduction wave.
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Abstract: The potential of titanium dioxide nanoparticles for advanced photochemical applica-

tions has prompted a number of studies to analyze the size, phase, and morphology dependent

properties. Previously we have used a thermodynamic model of nanoparticles as a function of

size and shape to predict the phase stability of titanium dioxide nanoparticles, with particular

attention given to the crossover of stability between the anatase and rutile phases. This work

has now been extended to titanium dioxide nanoparticles in water, to examine the effects of

various adsorption configurations on the equilibrium shape and the phase transition. Density

functional calculations have been used to accurately determine surface energies and surface

tension of low index hydrated stoichiometric surfaces of anatase and rutile, which are presented

along with a brief outline of the surface structure. We have shown that morphology of TiO2

nanocrystals is affected by the presence of water, resulting in variations in the size of the (001)

and (001h) truncation facets in anatase, and a reduction in the aspect ratio of rutile nanocrystals.

Our results also highlight that the consideration of hydrated nanocrystal surfaces is necessary

to accurately predict the correct size dependence of the anatase to rutile phase transition.

I. Introduction
Titanium dioxide (TiO2) is an important accessory oxide
mineral1 used widely in science and technology.2-5 Nano-
particles of this material are proving to be highly suitable
for advanced photochemical applications,6 especially inter-
facing with organic molecules7 including DNA.8 While the
nanoscale dimension is instrumental in facilitating many new
technologies, the size, phase, and morphology have been
found to be critical parameters in determining their suitability
for particular applications.9-13

Although macroscopically the rutile phase is more ther-
modynamically stable than the anatase phase14 (at ambient
pressures and temperatures), anatase has been found to be a
majority product of industrial sol-gel, and aerosol syntheses
of TiO2,3 and is common in nanoscale natural and synthetic
samples.5,15,16 Gribb and Banfield,3 and later Zhang and

Banfield,4 found that the synthesis of nanocrystalline TiO2

consistently resulted in anatase nanoparticles, which trans-
formed to rutile upon reaching a particular size (<14 nm).
The transformation from anatase to rutile has been observed
under different experimental conditions depending upon
parameters such as temperature17,18 and size. This implies
that the transition energetics are closely coupled with the
particle size19 and that anatase is in fact the most stable
polymorph at the nanoscale.

It has been proposed by a number of authors that the
anatase to rutile phase transformation is not only dependent
on grain size but also on impurities,20-22 reaction atmo-
sphere,23,29 and synthesis conditions.24-28 Yang et al.27

showed that synthesis conditions (chemicals/peptizing agents)
affect the crystallinity and phase transition temperature. In
this vein, Zaban et al.28 noted that the surface structure of
TiO2 is affected by the preparation conditions; and Ahonen
et al.29 observed that anatase synthesized in air transformed
to rutile at 973 K, but anatase synthesized in nitrogen trans-
formed to rutile at 1173 K. It has also been shown that nano-
crystalline TiO2 may be phase selected by careful control of
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the particle size as well as other experimental conditions.30-32

In addition to the control of the size of anatase nanocrystals,
the shape may also be manipulated,31,33,34which may in turn
enhance the adsorption properties of the nanocrystals by
increasing the effective area of preferred surface facets.

We suggest that nanocrystal morphology is also a factor
affecting the phase stability40 as, contrary to numerous
misconceptions, anatase nanoparticles are not necessarily
spherical.35 For example, high-resolution transmission elec-
tron microscopy (HRTEM) micrographs of Penn and Ban-
field36 clearly show that the tetragonal bipyramidal mor-
phology persists down to 3-5 nm in diameter. Similarly,
the morphology of larger (∼20 nm) rutile nanocrystals can
be discerned from the TEM images of Aruna et al.37

As part of an ongoing study, we have previously used a
thermodynamic model38 based on the free energy of (arbi-
trary) nanocrystals as a function of size and shape to
determine the minimum energy morphology of anatase and
rutile at the nanoscale and to examine the phase stability of
faceted TiO2 nanocrystals,39 as a function of surface hydro-
genation.40 The model predicted that a bifrustum Wulff
construction42 for anatase nanocrystals, and a bitetragonal
bipyramidal Wulff construction of rutile nanocrystals, which
became more squat as the coverage of hydrogen was
increased.

Further, the results of our study predict that (at low
temperatures) the anatase to rutile phase transition size also
depends on the surface hydrogenation. For clean surfaces
(vacuum conditions) this phase transition is predicted to occur
at an average diameter of approximately 9.3 nm for anatase
nanocrystals.39 This transition point slightly decreases to 8.9
nm when the surface bridging oxygens are H-terminated but
increases significantly to 23.1 nm when both the bridging
oxygens and undercoordinated titanium atoms of the surface
trilayer are H-terminated.40 As an extension of our previous
work, the present study uses the same model to examine the
relative phase stability of nanoscale anatase and rutile in
water. This is considered to be of vital importance, since
TiO2 nanoparticles are often produced and stored in solution.

The model takes as input the geometry of the nanocrystal
morphology, the surface free energy (γ), and the surface
tension (σ). The surface tension has a small but important
effect on the calculation of the anatase to rutile phase
transition.43 We have generated a consistent set of surface
energy and surface tension values for water terminated
stoichiometric low index (1× 1) surfaces of both anatase
and rutile, using ab initio methods. Both molecular and
dissociative adsorption configurations have been considered,
and the relative stability of each configuration has been
compared with the results of other authors where possible.

II. Methodology
The surface structure and energetics of the low index surfaces
of rutile and anatase were investigated by comparing highly
accurate first principles calculations of the total energy of
two-dimensional slabs with the corresponding three-dimen-
sional bulk lattice structures. The slabs were generated by
the addition of a 10 Å vacuum layer in the crystallographic
plane of interest and then terminating the ‘cleaved’ surfaces

with either molecular or dissociative H2O, in a complete
monolayer (θ ) 1). Both the bulk and surface slabs were
relaxed prior to calculation of the total energies.

The first principles calculations have been carried out using
Density Functional Theory (DFT) within the Generalized-
Gradient Approximation (GGA), with the exchange-correla-
tion functional of Perdew and Wang (PW91).44 This has been
implemented via the Vienna Ab initio Simulation Package
(VASP),45,46which spans reciprocal space with a plane-wave
basis up to a kinetic energy cutoff of 270 eV. We have used
the Linear Tetrahedron Method (LTM) with a 4× 4 × 4
Monkhorst-Pack k-point mesh, for both the initial relaxations
of the TiO2 slabs, and the final calculation of surface energies
and surface tensions. Although this choice of k-mesh results
in some superfluous k-points in the nonperiodic direction of
the surface slabs, it was found that the inclusion of these
k-points is more consistent with the LTM.

The electronic relaxation technique used here is an efficient
matrix-diagonalization routine based on a sequential band-
by-band residual minimization method of single-electron
energies,49,50 with direct inversion in the iterative subspace,
whereas the ionic relaxation involves minimization of the
Hellmann-Feynman forces. During the relaxations we have
used ultrasoft, gradient-corrected Vanderbilt-type pseudo-
potentials (US-PP)47,48and real-space projected wave func-
tions (to decrease the computational cost) and have relaxed
to a convergence of 10-4 eV. The following (final) energy
calculations were then performed using the Projected Aug-
mented Wave (PAW) potentials,51 with a basis set increased
to a cutoff of 350 eV and reciprocal-space projected wave
function (to improve accuracy), also to a convergence of 10-4

eV. PAW potentials are generally considered to be more
accurate than the ultrasoft pseudopotentials,52 since the radial
cutoffs (core radii) are smaller than the radii used for the
US pseudopotentials, and the fact that the PAW potentials
reconstruct the exact valence wave function with all nodes
in the core region (all electron).

III. TiO2 Surface
The surface science of the titanium dioxide polymorphs has
been investigated,53 including numerous studies investigating
the surface of H2O-terminated stoichiometric anatase54,56-58

and rutile.57-60 However, as a consistent set of surface
energies for both phases (calculated using the same theoreti-
cal technique and convergence criteria) is required to provide
a suitable input for the phase stability model, we have
undertaken our own calculations on the surfaces of interest.
Thus, the surface free energy and surface tension have been
determined for the structurally relaxed low index anatase and
rutile surfaces.

The relaxed surface structures are also presented, for the
purposes of comparison with other studies (where available)
for the lowest energy adsorption geometries. This will be
followed by the presentation of the calculated adsorption
energies, surface energies, and surface tensions.

A. Anatase Surfaces.In the following description each
atom in the outermost TiO2 trilayer has been labeled (in
Figure 1) according to species, with the subscript denoting
theatomiclayer with respect to the vacuum (layer (1) is the
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outermost layer of the surface TiO2 trilayer). The oxygen
associated with the adsorbate is denoted simply as O.

The hydrated surface trilayers of the anatase (001) surface
are shown at the top of Figure 1. The clean surface contains
5-fold coordinated (Ti(2)) atoms and 2-fold (O(1)) and 3-fold
coordinated (O(3)) oxygens. Dissociative adsorption was
found to be energetically favorable on this surface, with the
H and OH terminations oriented perpendicular to the surface
after relaxation. Compared with the clean surface,39 the
outward displacement of the oxygen atoms in the upper
trilayer was found to decrease in the presence of water. This
is most significant in the case of the O(1) bridging oxygen.
In contrast the outward displacement of the Ti(2) was found
to increase slightly in the presence of water. The final Ti(2)-
OH bond length was just under the equatorial Ti-O bond
length of anatase, and the O(1)-H bond length was found to
be slightly longer than the O-H bond length in water
(calculated to be 0.98 Å).

Calculated relaxations of these atoms are given in Table
1 along with the O(1)-H and Ti(2)-OH bond lengths. The
displacement of selected atoms on the anatase (001) surface
was examined by Bredow and Jug58 using the semiempirical
SINDO1 method and model clusters. The authors found that
the bridging O(1) atoms relaxed outward by 0.12 Å, the Ti(2)

atom relaxed outward by 0.16 Å, and the Ti(2)-OH bond
length was 1.85 Å, when a 4× 4 × 3 cluster was used.
Although the structure of the (001) surface was examined
by Vittadini et al.,54 they did not treat a complete monolayer
of dissociatively adsorbed water. However, for a coverage
of θ ) 0.5 (where the O(1)-H terminations were removed)
Vittadini et al.54 reported Ti(2)-OH bonds lengths between
1.74 and 1.93 Å.

Like the (001) surface, the clean (100) surface contains
5-fold coordinated Ti(3) atoms and 2-fold O(1) and 3-fold
coordinated O(2) atoms. When covered with a monolayer of
dissociated water, the surface (shown in the center of Figure
1) was found to undergo an outward relaxation of the O(2)

and Ti(3) atoms and a small inward relaxation of the O(1)

atoms. The Ti(3)-OH bond length was found to be 1.87 Å
and the O(1)-H bond length was 0.99 Å (see Table 1). The
most interesting aspect of this surface was the bending of
the O-H bonds of the OH groups toward each other, with
a H-H distance of 2.6 Å.

The clean (101) surface contains 5-fold Ti(3) and 2-fold
O(1) and 3-fold O(2) coordinated atoms within the first trilayer,
with a characteristic saw-tooth profile perpendicular to the
(010) direction. In this case molecular adsorption was found
to be energetically preferred (see section 3.3) as indicated
in the lower image of Figure 1. Following relaxation, both
O(1) and Ti(3) atoms were found to contract inward, and the
O(2) was found to relax outward (see Table 1). The Ti(3)-
OH2 bond length of 2.28 Å matches the length of 2.28 Å
reported by Vittadini et al.54 for this bond.

The anatase (110) surface was found to be structurally
unstable in the presence of water, both molecular and
dissociated. The surface was found to deteriorate into a
disordered structure. This structural change involved the
breaking of symmetry as the 4-fold coordinated surface Ti
atoms shifted from their lattice positions, and the desorption
of OH and H2O groups, sometimes involving O(1) atoms
rather than the O atoms of the water molecules. Hence, the
resulting surface could no longer be characterized as anatase,
rendering it unsuitable for use in the phase stability model
presented in the next section.

B. Rutile Surfaces.The (100), (110), and (011) surfaces
are considered by applying the labeling convention used in
the previous section for the anatase surfaces and are listed
in Table 2. The corrugated (100) surface contains 5-fold
coordinated Ti(2) atoms, with chains of 2-fold coordinated
O(1) bridging atoms in the upper most atomic layer. This
surface was found to prefer dissociative adsorption (as shown

Figure 1. The relaxed anatase hydrated (001), (100), and
(101) surfaces. The (001) and (100) surface exhibit dissocia-
tive adsorption, whereas the (101) surface exhibits molecular
adsorption. The atoms occupying the atomic layers (denoted
by the subscript) of the upper most trilayer labeled according
to Table 1.

Table 1: Comparison of Displacements (in Å), Normal to
the Surface, of Atoms in the Uppermost Trilayer of the
Hydrated and Clean39 Anatase Surfaces, along with the
Ti-OH2 and O-H Bond Lengths

surface label clean39 hydrated

(001) O(1) 0.20 0.03
dissociative Ti(2) 0.04 0.09

O(3) 0.05 0.02
Ti-OH 1.93
O(1)-H 1.01

(100) O(1) 0.18 -0.02
dissociative O(2) 0.04 0.01

Ti(3) -0.16 0.10
Ti-OH 1.87
O(1)-H 0.99

(101) O(1) 0.06 -0.01
molecular O(2) 0.28 0.10

Ti(3) -0.12 -0.05
Ti-OH2 2.28
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at the top of Figure 2), which is generally considered to be
the case in other experimental and theoretical studies.53 In
general, the (outward) relaxation of the hydrated surface was
found to be similar to the clean surface.39 The Ti(2)-OH bond
length of 1.90 Å was found to be just under the equatorial
Ti-O bond length of bulk rutile, and the O(1)-H bond length
was found to be just over the O-H bond length in water.

The hydrogen atoms terminating the bridging O(1) atoms
were also found to form weak hydrogen bonds with the O

atoms of the OH groups, with an O‚‚‚H length of 2.01-
2.03 Å. The issue of how well the PW91 exchange-
correlation functional reproduces hydrogen bonding was
briefly investigated by examining the relaxed geometry and
binding energy of a water dimer and comparing with results
obtained using second-order Møller-Plesset Perturbation
theory (MP2) and the 6-311+G(3df,2p) basis set.55 The
PW91-PAW (MP2) optimized structure was found to have
an O-O distance of 2.89 Å (2.90 Å) and an O‚‚‚H hydrogen
bond length of 1.90 Å (1.94 Å), with a binding energy of
0.177 eV (0.234 eV). The good agreement between the
PW91-PAW and MP2 results indicates that the method used
here in the calculation of surface properties is capable of
describing H-bonding reasonably well.

The (011) surface (center of Figure 2) has a ridged-like
structure and was also found to prefer dissociative adsorption.
The upper trilayer was found to relax outward approximately
0.1 Å more than the clean surface. The Ti(2)-OH2 bonds
were longer than the rutile apical and equatorial Ti-O bond
lengths. Similarly, the O(1)-H bond lengths were consider-
ably longer than the O-H bond in water. Like the (100)
surface, hydrogen bonds were observed between the hydro-
gen atoms connected to the bridging oxygens and the oxygen
atoms of the OH groups but with a considerably reduced
length of 1.44-1.47 Å.

Finally, the relaxed hydrated (110) surface (see lower
image of Figure 2), containing inequivalent Ti atoms lying
in a centered rectangular arrangement, was found to prefer
molecular adsorption. There is some disagreement in the
literature as to whether water adsorbs on this surface
molecularly or dissociatively, but in most cases experimental
investigations indicate molecular adsorption.53 Other theoreti-
cal studies have concluded that molecular adsorption is most
probable,61,62 and it has also been suggested that molecular
and dissociative water may coexist on the rutile (110)
surface.59

Even though our results indicate molecular adsorption, the
structure of the surface is somewhat distorted by the presence
of water, as shown in the lower image of Figure 2. On the
clean surface, the Ti(2) atoms denoted as connected to the
bridging oxygen (center of the image) are 6-fold coordinated,
while the exposed Ti(2) atoms at the sides of the image are
5-fold coordinated. These Ti(2) atoms become inequivalent
(see Table 2) on the hydrated surface, with the Ti(2) atoms
bound to the bridging O(1) relaxing outward, and the Ti(2)

atoms bound to the water molecules relaxing inward.
This layer distortion has been observed before60,62 and is

in part due to the accommodation of H-bonding between the
bridging O(1) atoms and hydrogens in the water molecules.
The length of these H-bonds of 1.66-1.67 Å is in good
agreement with the result 1.6-1.8 Å calculated by Langel62

using Car Parinello Molecular Dynamics (CPMD), and the
value of 1.61 Å is calculated by Ferris and Wang using the
self-consistent field (SCF) method and 3-21G basis set but
is considerably less that the 2.22 Å calculated by Menetrey
et al.60 using PW91-USPP.

Like the anatase (110) surface, the rutile (001) surface was
found to be unstable (with respect to a disordered surface
structure) in the presence of water, exhibiting bond breaking

Table 2: Comparison of Displacements (in Å), Normal to
the Surface, of Atoms in the Uppermost Trilayer of the
Hydrated and Clean39 Rutile Surfaces, along with the
Ti-OH2 and O-H Bond Lengths

surface label clean39 hydrated

(100) O(1) 0.16 0.13
dissociative Ti(2) 0.06 0.02

O(3) 0.15 0.16
Ti-OH 1.90
O(1)-H 0.99-1.01
H-bonds (O‚‚‚H) 2.01-2.03

(011) O(1) 0.09 0.17
dissociative Ti(2) 0.05 0.19

O(3) 0.14 0.25
Ti-OH 2.14-2.16
O(1)-H 1.01-1.08
H-bonds (O‚‚‚H) 1.44-1.47

(110) O(1) -0.19 0.08
molecular Ti(2) 0.40 0.35, -0.36

O(3) 0.24 -0.05
Ti-OH2 2.30
H-bonds (O ‚‚‚H) 1.66-1.67

Figure 2. The relaxed rutile hydrated (100), (110), and (011)
surfaces. The (100) and (011) surface exhibit dissociative
adsorption, whereas the (110) surface exhibits molecular
adsorption. The atoms occupying the atomic layers (denoted
by the subscript) of the upper most trilayer labeled according
to Table 2.
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and symmetry breaking upon relaxation. This instability has
(like the anatase (110) surface) been attributed to the 4-fold
coordinated Ti atoms on the surface.

C. Surface Energetics.Although both molecular and
dissociative adsorption geometries were examined on the
surfaces described above, the previous section only outlines
the details of the energetically preferred configuration. The
distinction as to which geometry constituted the energetically
preferred configuration was made by comparing the adsorp-
tion energies using the expression

whereNH2O is the total number of H2O units on the surface,
Eclean

surface is the total energy of the relaxed surface without
water,EH2O is the total energy of a free water molecule, and
EH2O

surfaceis the total energy of the water covered surface. The
adsorption energies for all surfaces are given in Table 3,
along with the results of other authors for comparison.

The value of the surface free energyγ was calculated from
the total energy of the bulk (EN

bulk) and surface (EN
surface)

slabs using the expressions

and

whereG is the free energy of the slab,A is the area of the
surface, andN is the number of TiO2 units in the (stoichio-
metric) cell. To account for the surface hydration,µH2O is
the chemical potential of water, calculated using63

where kB is Boltzmann’s constant,T, P, and ν are the
temperature, pressure, and vibrational frequencies of water
in the reservoir, andV is the quantum volume

Experimental values forν were used,64 and the chemical
potential was calculated at ambient temperature and pressure
(298.15 K and 101.33 kPa).

The value of the surface tensionσ was obtained using the
expression

By applying a two-dimensional uniform dilation in the plane
of the surface (including optimization of all internal param-
eters) and calculating the free energyG as shown in eq 3
for each area, the change in free energy (∆G) was found for
a set of area dilations (∆A). After plotting these results an

estimate of the surface tension was obtained from the slope.
The results of these calculations are contained within Tables
4 and 5 for anatase and rutile, respectively.

The relative stability of the low index anatase surfaces
may be discerned by comparing the values ofγ listed in
Table 4. The thermodynamic sequence (101)< (100) <
(001) is the same for the clean and hydrated surfaces;
however, the surface tensionσ varies considerably. On the
hydrated (001) and (100) surfacesσ is negative, indicating
a tendency for this surface to expand (rather than contract).
If present on the surface of a nanocrystal it would produce
a tensile dilation in the direction of the surface normal, rather
than a contraction. In general the surface tension of the
anatase surface was found to decrease in the presence of
water.

Previously we have obtained the order of (110)< (100)
< (011) for the clean rutile surfaces,39 and once again, this
is the same for the hydrated surfaces. Theσ of the rutile
surfaces (like anatase) was found to decrease when termi-

Ead ) 1
NH2O

(EH2O
surface- Eclean

surface+ NH2O
EH2O

) (1)

γ ) G
A

(2)

G ) 1
2
(EN

surface- EN
bulk - NH2O

µH2O
) (3)

µH2O
) EH2O

+ hν
2

+ kBT[ln(PV
kBT)] (4)

V ) ( h2

2πmkBT)3/2

(5)

σ ) ∂G
∂A

≈ ∆G
∆A

(6)

Table 3: Comparison of the Adsorption Energy Ead (eV)
as Indicated in Eq 1, Compared with the Hartree-Fock
(HF) Results of Fahmi and Minot,57 the DFT GGA Results
of Vittadini et al.,54 the DFT GGA Results of Lindan et al.,59

and the DFT GGA Results of Menetrey et al.60

this study reference 57 reference 54

anatase dissoc. molec. dissoc. molec. dissoc. molec.

(001) -0.45 0.23 -1.248 -0.682
(100) -0.29 -0.24
(101) -0.48 -0.56 -0.44 -0.72

this study reference 59 reference 60

rutile dissoc. molec. dissoc. molec. dissoc. molec.

(100) -0.57 unstablea

(011) -0.98 -0.43
(110) -0.27 -0.82 -0.91 -0.99 -1.14 -1.03

a Proton transfer was observed during relaxation, resulting in
dissociative geometry, indicating that this configuration was unstable
with respect to H++OH- dissociation.

Table 4: Comparison of Surface Free Energy γ and
Surface Tension σ (in J/m2), for the Clean39 Hydrated Low
Index Surfaces of Anatase

clean39 hydrated

surface adsorption γ σ γ σ

(001) dissociative 0.51 2.07 1.55 -0.37
(100) dissociative 0.39 0.60 1.13 -0.59
(101) molecular 0.35 0.51 1.03 0.45

Table 5: Comparison of Surface Free Energy γ and
Surface Tension σ (in J/m2), for the Clean39 and Hydrated
Low Index Surfaces of Rutile

clean39 hydrated

surface adsorption γ σ γ σ

(100) dissociative 0.60 0.95 1.57 0.61
(011) dissociative 0.95 1.50 1.79 1.36
(110) molecular 0.47 1.25 1.08 0.92
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nated by water, but in this case all tensions remained
compressive.

IV. Phase Stability of Faceted TiO 2

Nanocrystals in Water
Previously we have shown that for a given nanoparticle of
materialx, the free energy may be expressed (to first order)
as a sum of contributions from the particle bulk and
surfaces,38-41 such that

The free energy of formation of a nanocrystalGx
o is defined

in terms of the surface energyγxi for each surfacei, weighted
by the factorsfi, such that∑i fi ) 1.

Hence,

where∆f Gx
o is the standard free energy of formation of the

bulk (macroscopic) material,M is the molar mass,Fx is the
density, ande is the volume dilation induced by the surface
tension (which cannot be ignored at the nanoscale). In
general, the surface-to-volume ratioq and the weighting
factors fi must be calculated explicitly for each shape and
the facet therein. In this model the size dependence is
introduced not only by the surface-to-volume ratioq but also
by the reduction ofe as the crystal grows larger. The shape
dependence is also introduced byq as well as the weighted
sums of the surface energies and the surface tensions,
corresponding to the surfaces present in the particular
morphology of interest.

In general, the volume dilation due to the surface tension
may be approximated using the Laplace-Young equation38

for the effective pressure

whereR is the average radius of the particle, so that (with
the compressibilityâ ) 1/B0)

The surface tension is approximated by summing over the
(weighted) surface tension of the crystallographic surfaces
present on the nanocrystal

whereσxi is defined in eq 6 and listed in Tables 3 and 4 for
x ) anatase (A) and rutile (R), respectively. The values of
â for anatase and rutile were previously calculated39 by fitting
energy versus volume curves to the Vinet equation of state.65

The resulting values for anatase of 190 GPa and rutile of
218 GPa were in good agreement with the experimental
values of 179 GPa measured by Arlt et al.66 and of 211 GPa
measured by Gerward and Olsen,67 respectively.

Previously it has been determined that the Laplace-Young
description of the pressure is suitable in the case of faceted
nanocrystals and that the edge and corner effects are limited
over a diameter of approximately 2 nm.38-40 Therefore, the
surface energies and surface tensions for each surface facet
i, along with the molar mass of TiO2, the density of anatase
and rutile (FA ) 3.893 g/cm3 andFR ) 4.249 g/cm3), and
the standard free energies of formation68 (∆fGo

A and∆fGo
R)

are all that is required to compare the phase stability of
faceted TiO2 nanocrystals over this size.

It is important to note that for the reasons mentioned above
(and outlined in refs 38 and 39) this model is not applicable
for small nanoparticles but rather to the 2 nm to submicron
range. Therefore, for small nanoparticles less than 2 nm it
is still preferable to examine each morphology explicitly by
undertaking suitable calculations of isolated nanoparticles
(e.g.: DFT or Tight Binding).

At large sizes, in the range of 75-100 nm, the free energy
of the surfaces is less than 10-4 J/mol, making the energetics
of the surface less significant and other bulk effects more
significant. For example, in this size regime the macroscopic
(bulk) strain is as important as the surface strain, and the
entopic effects of the bulk will be as important as the surface
entropy. The present model does include the bulk strain but
does not explicitly include other macroscopic thermodynamic
arguments. For this reason, it is best applied to particles in
the range 2-100 nm.

All of the calculations in the present study have been
performed atT ) 0, so thatGx

o is equivalent to the enthalpy
of formation. It has been shown by Zhang and Banfield4 that
the change in the surface free energies with temperature is
of the order of 10-4 J/m2, so it has been assumed here that
variations in the equilibrium morphology of anatase and rutile
nanocrystals due to temperature effects will be negligible.

A. Predicting Nanomorphology. The standard method
for determining the equilibrium morphology of a material is
to generate the Wulff construction42 using the surface
energies. However, as the Wulff construction does not take
into account the effects of surface tension it is possible that
the morphologies of nanocrystals may deviate from this
shape. Using the model described above, we have investi-
gated this possibility by optimizing the nanoparticle shape,
as a function of size.

Beginning with the Wulff constructions as the initial case,
the morphology of anatase and rutile nanocrystals were
defined in terms of two independent length parametersA
andB, as shown in Figures 3 and 4. In the case of anatase,
this shape may vary depending upon the energetic relation-
ship between{101} and{001} forms. In either case, the side
of this bipyramidal form is denotedA. In nature, anatase
crystals often exhibit a truncated bipyramid, or bifrustum,
with square facets in the (001) and (001h) planes (displayed
as the interior solid in Figure 3). The side of this ‘truncation’
facet is denotedB. The degree of truncation may therefore
be described by the size ofB with respect toA (where 0e
B e A).

The Wulff construction for rutile predicts a tetragonal
prism bounded by{110} surfaces and terminated by a pair
of tetragonal pyramids bounded by{011} surfaces (see

Gx
o ) Gx

bulk + Gx
surface (7)

Gx
o ) ∆f Gx

o +
M

Fx

(1 - e)[q∑
i

fiγxi] (8)

Peff )
2σx

R
(9)

e )
2âσx

R
(10)

σx ) ∑
i

fiσxi (11)
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Figure 4). The side of the tetragonal{110} prism is denoted
A. In nature, the shape of rutile may vary from long acicular
crystals to a short blocky habit. Therefore, the length of the
tetragonal{110} prism is denotedB. The shape of the rutile
crystal (the aspect ratio) may be described by the length of
B with respect toA (where 0e B < ∞).

By defining all the geometric parameters such as the
volume and surface area of the various facets in terms of
the ratioB/A, the energy was minimized with respect to this
new variable. The numerical minimization was performed
using a conjugate gradient scheme, in an attempt to find a
value ofB/A that produces a shape that is lower in energy
than the Wulff construction as a function of size. This
procedure was performed for ‘clean’ and hydrated anatase
and rutile.

In the case of nanoscale anatase, shapes lower in energy
than the Wulff construction were identified, as shown in
Figure 5. Figure 5(a) shows a plot of the optimizedB/A for
sizesA ) 2 to 300 nm, and Figure 5(b) shows the length of
B for A in the same range. At very small sizes (in a vacuum
and in water), the model predicts that small truncation facets
of B/A ) 0.32 and 0.30, even though the Wulff constructions
(with same energies) predict values ofB/A ) 0.47 and 0.45.
The size of these facets with respect to the overall size of
the nanocrystal fluctuates somewhat, especially in the
case of the clean surfaces for nanocrystals less thanA )
100 nm. It is also important to note that as the model predicts
that the size of the truncation facet will be slightly different

for clean and hydrated nanocrystals. In both cases, as the
anatase crystals increase in size and the effects of surface
tension diminish, the shape converges to that of the Wulff
construction which remains the macroscopically lowest
energy shape.

In the case of rutile, no lower energy shape was found,
indicating that the Wulff construction dominates even at the
nanoscale. It is important to note, however, that the optimi-
zation of rutile shape is more complicated than anatase since
B has no upper bound. The length ofB may therefore
increase rapidly with respect toA, producing long needlelike
crystals with a higher energy per TiO2 unit than the Wulff
construction. These nano-rod shaped crystals represent local
minima in the shape-energy surface and are sampled due to
the fact that the shape optimization described above acts only
on theopenform of the tetragonal{110} prism. During these
optimizations the energy associated with the terminating
tetragonal{011} pyramids remains constant.

The final shapes predicted by the model outlined above
for anatase and rutile nanocrystals in a vacuum and in water
(with a side lengthA e 100 nm) are shown in Figure 6.
These results predict that water reduces the (001) and (001h)
truncation facets at the apexes of the anatase nanocrystals
and reduced the aspect ratio of the rutile nanocrystals.

B. Anatase to Rutile Phase Transition in Water.Finally,
for each of the clean and hydrated nanocrystals shown in
Figure 6, the value ofGo

A andGo
R were calculated and plotted

as a function of the number of TiO2 units, by using the
appropriate surface energies from Tables 4 and 5. In each
case, the point of intersection of the free energies of anatase
and rutile identifies the phase transition. These plots are shown

Figure 3. An example of an anatase tetragonal {101}
bipyramid is shown in outline, and an example of the bifrustum
formed by addition of (001) and (001h) truncation facets is
shown as the interior solid. The side lengths labeled A and B
are used to define the degree of truncation.

Figure 4. An example of the rutile tetragonal {110} prism
terminated by a pair of tetragonal {011} pyramids. The side
lengths labeled A and B are used to define the aspect ratio
of the crystal.

Figure 5. (a) Plot of the optimized ratio B/A and (b) length
of B for each A for anatase nanocrystals in a vacuum and in
water, with a side length A ) 2 to 100 nm. The facet edges
A and B are defined in Figure 3.
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in Figure 7 for nanoscale TiO2 with (a) clean and (b) hydrated
surfaces. The phase stability of TiO2 in a vacuum has been
reported before39 and is included here for the purposes of
comparison.

By comparing these results it is clear that the phase
stability of nano-anatase is greater in water than in a vacuum.
The intersection point for clean nanocrystals occurs at
∼12 600 TiO2 units, corresponding to an anatase nanocrystal
with average diameter of∼9.6 nm. For nanocrystals in water

the intersection point occurs at∼52 580 TiO2 units, corre-
sponding to an anatase nanocrystal with an average diameter
of ∼15.1 nm. Experimentally, the transition point for
hydrothermal samples at∼650-800 K has been predicted
to be at approximately 11.4-17.6 nm but has been found to
decrease with temperature.3

Previously, a similar increase in the phase transition size
of nano-anatase was predicted when the anatase and rutile
surfaces were saturated with hydrogen.40 At a full monolayer
coverage of hydrogen the phase transition was predicted to
be at ∼196 900 TiO2 units, corresponding to an anatase
nanocrystal with an average diameter of∼23.1 nm. This is
not the same as in water, indicating that it is not simply the
termination of undercoordinated surface sites that affect the
stability of nanoscale TiO2, but also what these sites are
terminated with. These striking results illustrate that the
chemical environment plays an important part in phase
stability and that the theoretical model used here is quite
capable of describing these subtleties.

V. Conclusions
We have presented results of a thermodynamic model for
the free energy of nanocrystals as a function of size and shape
to illustrate the effects of water on the equilibrium shape
and phase stability of anatase and rutile at the nanoscale.
Using a complete set of values for the surface energy and
surface tension of low index stoichiometric surfaces calcu-
lated using DFT GGA with the PAW potential method, we
have shown that the morphology of TiO2 nanocrystals is
affected by the presence of water, resulting in variations in
the size of the (001) and (001h) truncation facets in anatase,
and a reduction in the aspect ratio of rutile nanocrystals.

Our results for hydrated nanocrystals also predict (at low
temperatures) an anatase to rutile phase transition size of
∼15.1 nm that is in good agreement with experiment,3

highlighting that the consideration of appropriate surface
passivation of nanocrystal surfaces is necessary to accurately
predict the correct size dependence of the anatase to rutile
phase transition. Further work is currently underway to
examine the effects of pH on the phase transition size and
shape.
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Abstract: We have extended a newly developed approach to study the low-frequency normal

modes of mesoscopic fragments of linear DNA in order to investigate the dynamics of closed

circular molecules of comparable size, i.e., a few hundred base pairs. We have added restraint

energy terms and a global minimization step to treat the more complicated, spatially constrained

duplex in terms of the intrinsic conformation and flexibility of the constituent base-pair “step”

parameters. Initial application of the methodology to the normal modes of an ideal closed circular

DNA moleculeswhich is naturally straight in its relaxed open linear state, inextensible, and

capable of isotropic bending and independent twisting at the base-pair levelsmatches theoretical

predictions of elastic rod dynamics. The energy-optimized closed circular states and the types

of low frequency motions follow expected behavior, with (1) uniform twist density and uniform

energy density in the minimum energy state; (2) a near-zero frequency torsional mode with

“free” rotation about the global helical axis; (3) higher-order torsional modes accompanied by

global rocking motions and pure in-plane and out-of-plane bending motions in the torsionally

relaxed circle; and (4) mixed modes of bending when the chain is supercoiled (over- or

undertwisted). Furthermore, the computed changes in normal-mode frequencies with imposed

supercoiling or with variation of chain length are virtually identical to theoretically predicted values.

Introduction
The elastic properties of DNA are revealed in its dynamic
structure. Experiments that probe the dynamics of DNA are
usually interpreted in terms of the motions of a spatially
homogeneous, naturally straight, elastic rod without distin-
guishing chemical features, and any local sequence-depend-
ent behavior is folded into three global constants tied to the
overall bending, twisting, and stretching of the molecule. By
contrast, computations of the dynamics of DNA are often
highly detailed, allowing for the movement of each atom in
the double helical structure and the surrounding layers of

solvent. The level of detail in such studies precludes the
simulation of mesoscopic pieces of DNA of a few hundred
base pairs, and conversely, computational treatment of
mesoscopic DNA fragments necessitates some loss of
information about chemical fine structure.

Recently, we reported a new computational approach for
studying the dynamic properties of relatively long, linear
DNA molecules without losing track of the local conforma-
tional features.1 Specifically, we identify the low frequency
normal modes that underlie the global bending, twisting, and
stretching of defined polymeric sequences. Application of
the method to representative DNA chain models reveals
subtle relationships between sequence and collective poly-
meric motions. For example, the appropriate spacing of
highly deformable pyrimidine-purine dimer steps in phase
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with the 10-fold double helical repeat induces a mesoscopic
bending anisotropy that is conducive to DNA loop formation.

The computations have now been extended so that it is
possible to study more complicated DNA systems, where
the structure of the double helix is restrained by long-range
physical or chemical forces. In this paper, we report the
dynamic properties of closed circular DNA, one of the
simplest systems that can be studied with the new approach.
We compare our numerical results with the theoretically
predicted dynamical properties of a circular DNA modeled
as an ideal, inextensible elastic rod.

Methods
We take advantage of a newly developed computational
method for carrying out normal-mode analyses of long, linear
DNA molecules in terms of the constituent base-pair step
parameters.1 The approach taken here is identical in all
respects to the earlier work, except for an additional energy
term needed to keep the ends of the chain in place and an
initial energy minimization step used to incorporate this
anchoring constraint. We thus omit further description of the
methodology and refer the reader to the literature1 for
additional information. We focus instead on the independent
variables and potential function used in the present calcula-
tions, the energy minimization process, and the theoretical
principles used to determine the normal modes of DNA.

Independent Variables.Normal-mode analyses of pro-
teins and nucleic acids are usually performed in Cartesian
or dihedral angle space. The set of individual atomic
coordinates used to specify molecular structure in the former
case has two important computational advantages: (1) the
simple form of the equations of molecular motion and (2)
the detailed information about local conformational change
that can be obtained from the analysis. The applicability of
Cartesian-based studies is limited, however, by the large
number of variables needed to describe molecular structure.
The use of dihedral angles as independent variables partially
overcomes this limitation, with a reduction in the number
of conformational parameters realized by setting the chemical
bond lengths and valence angles to equilibrium values and
taking only the rotatable dihedral angles as independent
variables. The contribution of the latter parameters to overall
polymeric motions is dominant even if all chemical degrees
of freedom are considered. Therefore, as long as one is
interested in the global properties of a macromolecule,
normal-mode analysis in dihedral angle space can be quite
effective.2-4

In the case of nucleic acids, there is an even simpler way
to describe three-dimensional molecular motion. Because
each base or base pair can be approximated as a rigid body,
molecular structure can be described in terms of the relative
positions and orientations of complementary bases or suc-
cessive base pairs. Six rigid-body parameters are needed to
specify the relative position of each pair of rigid bodies. In
this study, we treat the base pairs as rigid objects and use
the six base-pair step parameterssTilt, Roll, Twist, Shift,
Slide, Rise5sas independent variables. The description of
nucleic acid structure is not complete, however, without
specification of the sugar-phosphate backbone. We therefore

treat each DNA strand as a chain of nucleotide 5′-mono-
phosphates, with each residue fixed in the B-form and related
to its sequential neighbors by a given set of local base-pair
step parameters. This treatment drastically reduces the
number of variables needed to describe helical structure and
is key to the present study of mesoscopic-length DNA circles.
The step parameters are defined according to the formulation
of El Hassan and Calladine,6 and the backbone is incorpo-
rated by superposition of a 5′-nucleotide fragment from the
canonical B-DNA fiber diffraction model.7 The local chemi-
cal environment is implicitly treated in terms of the range
of allowed dimeric deformations (see below). The ensemble
properties deduced from the normal modes are independent
of the surrounding medium, e.g., solvent viscosity.

Force Field. Minimization of the potential energy is
carried out prior to normal-mode analysis and is the most
time-consuming part of the calculation. The simple form of
the energy, made up of the internal dimer step energies and
an external ring-closure restraint term, accelerates the energy
minimization step.

The energy of each dimer step,Ed, is expressed as a sum
of elastic contributions over the six base-pair step parameters8

where theθi (i ) 1, 2, ..., 6) are the instantaneous values of
the base-pair step parameterssTilt, Roll, Twist, Shift, Slide,
Risesof a given dinucleotide step and theθi

u are the
equilibrium values of the parameters in an undeformed, linear
B-DNA reference state. The total internal energy is a sum
of the Ed values for thenB base-pair steps of the cyclic
molecule. Here, to facilitate comparison of the computed
normal modes with the theoretically predicted fluctuations
of an elastic rod, we consider an ideal, naturally straight
B-DNA homopolymer in which each dimer adopts an
identical equilibrium rest state. In this model, the planes of
neighboring base pairs are perfectly parallel (θ1

u ) θ2
u ) 0°),

the equilibrium Twist is fixed atθ3
u ) 36°, and the sequen-

tial displacement is restricted to Rise, i.e.,θ4
u ) θ5

u ) 0 Å;
θ6

u ) 3.4 Å.
The elastic constants in eq 1,fij, are similarly chosen to

mimic the known properties of an ideal rod. The variation
of individual “step” parameters is thus assumed to be
independent of one another, and thefij of cross terms (i * j)
are set equal to zero. As a result, only self-product terms
remain in eq 1. An energy ofkBT/2 is assigned to each such
term at thermal equilibrium. Thus, the elastic constantsfii
are described in terms of the mean-square fluctuations, i.e.,
fii ) kBT/〈∆θi

2〉, wherekB is the Boltzmann constant andT
the temperature in Kelvin. The expression of thefii in this
form is convenient for calibrating equilibrium properties of
the DNA model,9 including the persistence length, a measure
of the distance over which segments of the polymer remain
directionally correlated.10 [The scaling of the local energy
in terms of the thermal fluctuations of individual base-pair
step parameters should be not be confused with the normal
mode deformations of the DNA as a whole, which are
described below in terms of global energy changes ofkBT/2
or less.] The energy change in the sugar-phosphate back-

Ed ) 1
2 ∑

i)1

6

∑
j)1

6

fij(θi - θi
u)(θj - θj

u) (1)
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bone associated with the variation of base-pair step param-
eters is implicitly considered in the potential, validating the
incorporation of fixed backbone units noted above. Bending
deformations are assumed to be isotropic and are calibrated
such that the persistence length of the linear chain is
500 Å,9 i.e., 〈∆Tilt 2〉1/2 ) 〈∆Roll2〉1/2 ) 4.7°. The variation
in dimeric twist,〈∆Twist2〉1/2, is set to 4° based on estimates
of the fluctuations of helical twist in supercoiled DNA
involving considerations of the residual writhe in closed
circular structures.11-13 The force constants of the displace-
ment variabless〈∆Shift2〉1/2 ) 〈∆Slide2〉1/2 ) 〈∆Rise2〉1/2 )
0.1 Åsare assigned values large enough to preclude stretch-
ing so that the model is directly comparable to the repre-
sentation of DNA used in the theory of an ideal inextensible
elastic rod.14,15Calculations based on the model can thus be
compared with predictions of the theory. The choice of local
force constants produces a linear polymer with global elastic
properties characterized by a bending rigidityA of 2.1 ×
10-19 erg-cm and a twisting modulusC of 2.9× 10-19 erg-
cm. The latter values are obtained from the computed normal-
mode frequencies of the linear molecule.1 Effects of se-
quence, i.e., the known sequence-dependent fine structure
and deformability of DNA,8 are not considered in the theory
and are thus ignored in the present calculations. The assumed
DNA variability is, nevertheless, comparable to the range
of conformational distortions seen in high-resolution crystal
structures but is broader than the local angular fluctuations
deduced from direct measurements of short-time chain
dynamics.16,17As discussed previously,1 the potential energy
of DNA is not a smooth quadratic function. Whereas the
equilibrium bending properties of DNA reflect transitions
between multiple discrete minima, the apparent stiffness of
the DNA probed in the time-dependent experiments seem-
ingly arises from molecules trapped in a single low-energy
state.

The restraint energy,Er, is given by a sum overN distance
restraints

whereCk is an arbitrarily chosen spring constant,dk is the
instantaneous distance between two points on which a
distance restraint is placed, andd°k is the desired separation
distance. Restraints that force the overlap of the origins and
thex- andz-axes of terminal base pairs are used to generate
DNA circles. Because the restraint energy is close to zero
after energy minimization, the dimeric contributions from
eq 1 dominate the total energy.

Energy Minimization. The normal modes of a molecule
are collective, low-energy motions of the system as a whole
in the vicinity of its minimum energy configuration. The
deformations in global structure are described by harmonic
fluctuations of individual conformational parameters from
their rest values at the energy minimum. In the case of linear
DNA, the minimum energy state is self-evident from the
equilibrium rest states, i.e.,θi

u values, of sequential dimers.
The minimum energy configuration of circular DNA, how-
ever, cannot be determined a priori because of the additional

long-range distance restraint(s). Therefore, numerical cal-
culations must be performed to find the state of lowest
energy. Both conjugate gradient and Newton-Raphson
methods are used in the minimization process, the former
approach introduced at the first stage of optimization and
the latter technique once the decrease of energy per iteration
becomes small. Determination of the requisite first and
second derivatives of the energy with respect to the base-
pair step parameters, however, is not straightforward as the
restraint energy (eq 2) is a function of long-range intramo-
lecular distances. We make use of analytical expressions for
the derivatives developed by Goj and co-workers18,19 to treat
the normal mode dynamics of a system of two molecules,
each of which moves in dihedral angle space. The set of
rigid body parameters used here to relate neighboring base-
pair planes is identical in form to the variables previously
used to describe the relative global positions and orientations
of different molecules. The second derivative of the energy
function and the molecular configuration at the energy
minimum are used as input for normal-mode analysis.

Global Reference System.Each base pair of the energy-
minimized DNA circle has a fixed coordinate frame defined
in accordance with established guidelines.20 The sequence
of vectors connecting the origins of base-pair coordinate
frames forms an approximately circular pathway in the
minimum energy state. The step parameters used as inde-
pendent variables in the normal-mode calculations, while
useful for analyzing structural changes of DNA at the base-
pair level, are less convenient for describing the global
structural changes of a closed, circular DNA. We thus
introduce a second coordinate frame on each base pair with
one axisn° directed from the origin toward the center of
the circle, a second axisb° oriented perpendicular to the
plane of the circle, and the third axist° chosen to form a
right-handed coordinate system (t° ) n° × b°). These three
axes constitute a right-handed Frenet-Serret triad (n°, b°, t°),
with elements corresponding respectively to the principal
normal, binormal, and unit tangent vector at points on the
DNA circle. For further analysis, we define a fourth axis
(OBP - P) × t°, whereOBP is the origin of the base-pair
coordinate frame at a given hydrogen-bonded nucleotide unit
in an arbitrary DNA structure, andP is a point on the base-
pair plane. This axis is useful for analyzing torsional motions,
where a given point on each base-pair plane rotates around
t°. By analyzing the fluctuations of the molecule with respect
to these axes, we obtain an image of overall global motion
for each normal mode that complements the picture of local
structural deformations provided by the base-pair step
parameters.

Analytical Treatment. Given the linear differential equa-
tions which appear in the analytical theory of the normal
modes of circular rings formed from naturally straight,
inextensible, symmetric, elastic rods,14,15the distortions from
the circular configuration (the solutions of these equations)
can be written as a linear combination of terms, each of
which is proportional to the time-dependent functione(iωt,
whereω is the frequency. Furthermore, the fact that the axial
curve is closed requires that the solutions be periodic, so
that their dependence on arc lengths (along the axial curve)

Er ) ∑
k)1

N

Ck(dk - d°k)
2 (2)
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is similarly determined. That is, each of the terms in the linear
combination must also be proportional toe(inκos, whereκo is
the curvature of the circle andn ) 0, 1, 2, .... (The
wavelengthλn of a normal mode is simply related to the
integern by the equationλn ) 2π/nκo.) Introduction of these
substitutions leads to a system of homogeneous linear
equations with unknown constant amplitudes. The determi-
nant made up of the coefficients of these amplitudes is a
function ofΩ, κo, ∆Two, n, andω2, where∆Two is the excess
twist (of the circular equilibrium structure as a whole) and
Ω ) C/A is the ratio of the global twisting modulus to the
global bending modulus. The determinant takes the form of
a polynomial cubic inω2, M3ω6 + M2ω4 + M1ω2 + M0,
with the coefficientsM3, M2, M1, andM0 given by

The normal-mode frequencyω for given values of the four
parametersΩ, κo, ∆Two, and n is obtained by setting the
polynomial equal to zero and solving the cubic equation in
(ω2), i.e., the roots of the polynomial determine the normal-
mode frequencies of the elastic ring for that choice of
parameters.

For each value ofn, there are three distinct frequencies.
The casen equal to 0 or 1 is special. For these values ofn,
both M1 andM0, the only two of the four coefficients that
depend on∆Two, are zero. It follows that the six mode
frequencies associated with these two values ofn are
independent of∆Two. Of these six frequencies, five are zero,
and the nonzero frequency is given by (M2/M3)1/2. Finally,
the circular symmetry inherent in the problem gives rise to
a 2-fold degeneracy: in general there are two modes
associated with each distinct normal-mode frequency.

For the case of the torsionally relaxed circle, where
∆Two ) 0, the coefficientsMi in the dispersion relation are
such that it is possible to give explicit expressions for the
square of each of the three frequencies associated with a
given n. The square of the frequencyωip

2 (n) of the two
degenerate in-plane modes for thatn is

and the square of the two remaining frequencies, those of
the out-of-plane modes,ωop

2 (n), are

where Ro () 1/κo) is the radius of the circle. In these
expressionsRo is measured in units of half the radiusr of
the elastic rod, about 5 Å in the case of DNA, and the
frequency is measured in units of (4/r3)(A/πF)1/2. HereF is
the density of the material from which the rod is made.

Results and Discussion
Minimum Energy Circular Configurations. We start the
energy minimization from an open, perfectly straight
DNA molecules with ideal B-DNA step parameters
(θ1 ) θ2 ) 0°, θ3 ) 36°, θ4 ) θ5 ) 0 Å, θ6 ) 3.4 Å) at all
dimeric units. The optimization balances two competing
terms, i.e., the elastic energy in eq 1, which acts to preserve
the B-DNA equilibrium geometry (θ1

u ) θ2
u ) 0°, θ3

u ) 36°,
θ4

u ) θ5
u ) 0 Å, θ6

u ) 3.4 Å) of individual base-pair steps,
and the end-to-end restraint energy in eq 2, which forces
chain cyclization. The energy-minimization process is di-
vided into two steps. Minimization is initially performed with
restraints that force the overlap of the origins and normals
(z-axes) of terminal base pairs and then is carried out with
an additional restraint on thex-axes of the same residues.
This two-step procedure guarantees successful ring closure
and also ensures that the energy-minimized circular DNA
configuration is torsionally relaxed, i.e., with the desired
number of helical turns.

Using the energy-minimized structure as an initial con-
formation, we then create a series of slightly perturbed 200
base pair (bp) closed circular DNA molecules by changing
the intrinsic Twistθ3

u in eq 1, to study the effects of over-
and undertwisting on the structure and dynamics of circular
DNA. The uniform variation ofθ3

u mimics the known
effects of temperature and added salt on DNA helical
twisting.21-23 The potential energies found upon minimization
are plotted versus the intrinsic Twistθ3

u in Figure 1. A
parabolic function of the formy ) a(x - x0)2 + y0, which
fits the potential energy plot, is also depicted in the figure.
The minimum energy valuey0, the Twist anglex0 at the
minimum, and the coefficienta of the parabolic function
are summarized in Table 1.

Mechanical Constants. The minimum energy state and
curvature in Figure 1 can be used as follows to deduce
mechanical constants that describe the global bending and
twisting rigidity of an ideal, inextensible DNA elastic rod.
Given that the potential energy of the rod arises from its
overall bending and twisting, the minimum energy in the
parabolic function in Figure 1 corresponds to the torsionally
relaxed state of DNA, where the energy contribution comes
purely from bending. Furthermore, the bending energy of
an intrinsically straight rod closed into a circle is 2π2A/L,
whereA is the bending rigidity andL is the length of the
rod.24 The bending rigidity is therefore easily calculated from
the minimum energy values asA ) y0(L/2π2) and is also

M3 ) 2(κo)-10(1 + (κo)2 + n6(κo)4 - 2n4(κo)2((κo)2 - 1) +

n2((κo)4 - (κo)2 + 1))

M2 ) -n2(κo)-8

(n6(κo)4(Ω + 4) + 2n4(κo)2(Ω + 2 - 5(κo)2)

+ n2(4(κo)2(2(κo)2 - 1) + Ω(1 + (κo)2 - 3(κo)4))

+ 2(κo)4(Ω - 1) + Ω(3(κo)2 + 1)
)

M1 ) n4(n2 - 1)(κo)-4(-(Ω - 2)(κo)2 + 2n4(Ω + 1)(κo)2

-n2(4(κo)2 + Ω((κo)2 - 2))

-2Ω2(κo)2(∆Two)2(n2 - 1)
)

M0 ) -n6(n2 - 1)2Ω(n2 - 1 - (∆Two)2Ω2) (3)

ωip
2 (n) )

n2(n2 - 1)2

(Ro)2((n2 - 1)2 + (Ro)2(n2 + 1))
(4)

ωop
2 (n) )

n2(Ω(n2 + (Ro)2 + 2) + 2(n2 - 1))

4(Ro)2(n2 + (Ro)2)
(

n2x(Ω(n2+(Ro)2 + 2) + 2(n2 - 1))2 - 8Ω(n2 - 1)(n2 + (Ro)2)

4(Ro)2(n2 + (Ro)2)
(5)
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reported in the table. Similarly, the curvature 2a of the
parabolic function in Figure 1 is related to the twisting
rigidity C by a ) CnB

2/2L, wherenB is the number of base-
pair steps. Cyclization of a linear DNA ofnB bp with intrinsic
Twist x ) θ3

u introduces additional torsional stress,
-nB(x - x0), where x0 is the equilibrium Twist of the
torsionally relaxed molecule. The increase in twist raises the
elastic energy byCnB

2(x - x0)2/2L,24 corresponding to an
increment ofa(x - x0)2 in the computed energy (Figure 1).
Therefore, the global twisting rigidity is easily calculated
and also reported in Table 1. The values of the bending and
twisting rigidities of a linear 200 bp DNA molecule with
the same conformational features are included for comparison
in the table. The latter constants, which are derived from
the computed normal-mode bending and twisting frequencies
of an open chain subject to the same dimeric potential,1 are
remarkably close to the values calculated from the minimum
energy of the circular molecule.

It should be noted that the above expressions forA andC
are only valid for the current simplified DNA force field,
where the Twist in the minimum energy structure is nearly
constant at every base-pair step. In the case of real DNA,8

the uptake of Twist in the minimum energy state is not
uniform, with local variations associated with intrinsic
bending, correlations between base-pair parameters, etc.25,26

The preceding calculation of mechanical constants does not
hold in such instances.

Smooth Bending. Figure 2 illustrates the uptake of bending
along the contour of the 200 bp torsionally relaxed DNA
circle in its minimum energy state. Because the same
conformational pattern is repeated every 10 bp, step param-
eters in the minimum energy structure, which are henceforth
termed Tilt°, Roll°, Twist°, ..., are reported for only a
fragment of the chain, here the first 20 bp steps. [These
“static” values should not be confused with the “dynamic”
fluctuations of step parameters which are reported in later
sections.] As expected from the theory,24 the values of Twist°
are constant (36°) in the minimum energy state and therefore
not shown. The sinusoidal changes in Tilt° and Roll° follow
the characteristic pattern of “smooth” DNA bending,27-29

with one parameter attaining a maximum or minimum value
when the other is zero. Details of the best-fit cosine functions,
which are plotted in the figure, are summarized in Table 2.
As is clear from the expressions, the sequential changes of
Tilt° and Roll° differ in phase by 90°. The curves that fit
Tilt° and Roll° values in DNA with different values of
intrinsic Twist, θ3

u, are also summarized in the table. The

Figure 1. Minimized energy of a 200 bp closed circular DNA
molecule, which is naturally straight in its equilibrium rest state
and governed by an ideal elastic potential, plotted as a
function of the intrinsic Twist, θ3

u. The parabolic function, y )
a(x - x0)2 + y0, fitted to computed points of minimum energy
(open circles), is depicted by a solid line. See Table 1 for
numerical values of the fitted constants.

Table 1. Details of the Parabolic Function, y ) a(x - x0)2

+ y0, Which Fits the Minimum Energy Plot in Figure 1, and
Derived Mechanical Constants of a 200 bp DNA Circle,
Which Is Naturally Straight in Its Equilibrium Rest State
and Subject at the Level of Neighboring Base-Pair Steps to
an Ideal Elastic Potential

x0

(deg)
y0

(kBT)
a

(kBT/deg2)
bending rigiditya

(10-19 erg-cm)
twisting rigiditya

(10-19 erg-cm)

36 14.579 6.298 2.066 (2.098) 2.892 (2.879)
a Mechanical constants calculated on the basis of the normal-mode

frequencies of the corresponding linear DNA chain are reported in
parentheses.

Figure 2. Sequential variation of Tilt° and Roll° angles (∆
and o symbols, respectively) along the contour of a 200 bp
torsionally relaxed DNA circle which is naturally straight in its
equilibrium rest state and subject to an ideal elastic potential.
Cosine functions fitted to the data (see Table 2) are repre-
sented respectively by thick solid and dashed curves. Values
of Tilt and Roll (filled-in ∆ and o symbols) at the moment when
the potential energy is raised by kBT/(2 × 104) along the lowest
frequency (n ) 0) torsional mode are also plotted. Cosine
functions fitted to the data are represented by thin solid and
dashed curves, respectively. Because of the repetitive pattern
of conformational variation, data are shown for only the first
20 steps of the chain.

Table 2. Base-Pair Step Parameters, in Degrees, at the
mth Dimer Step of an Ideal, Inextensiblea Circular DNA
Molecule of nB Base Pairs and Intrinsic Twist θ3

u in the
Minimum Energy State

nB θ3
u Tilt° Roll° Twist°

160 36 2.25 cos(36(m - 0.50)) 2.25 cos(36(m - 0.50) + 90) 36

180 36 2.00 cos(36(m - 0.50)) 2.00 cos(36(m - 0.50) + 90) 36

200 35.5 1.80 cos(36(m - 0.74)) 1.80 cos(36(m - 0.74) + 90) 36

200 36 1.80 cos(36(m - 0.50)) 1.80 cos(36(m - 0.50) + 90) 36

200 36.5 1.80 cos(36(m - 0.12)) 1.80 cos(36(m - 0.12) + 90) 36

220 36 1.64 cos(36(m - 0.50)) 1.64 cos(36(m - 0.50) + 90) 36

240 36 1.50 cos(36(m - 0.50)) 1.50 cos(36(m - 0.50) + 90) 36
a (Shift°, Slide°, Rise°) ) (0 Å, 0 Å, 3.4 Å).
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latter curves, reported for chains of 200 bp, are also related
to each other by a 90° phase shift.

In a later section, we study the dependence of normal-
mode frequencies on the length of DNA. For this reason,
we have constructed torsionally relaxed DNA circles of
different chain lengths (160, 180, 220, 240 bp) using the
same ideal force field. The values of Tilt° and Roll° in the
minimum energy state are again well approximated by single
cosine curves, which are summarized in Table 2. Step
parameters, in degrees, at themth dimer steps of the
minimum energy structures fit the following general form if
nB, the number of base pairs, is a multiple of 10:

The inverse dependence in this expression of the ampli-
tudes of Tilt° and Roll° on nB means that the curvature of
the molecule is proportional to the amplitude of local
conformational changes. Since curvature is the inverse of
the radius of a circle and the radius of a circular DNA
molecule is proportional to the number of base pairs,
curvature is also proportional to the inverse ofnB. Thus, when
the amplitude of Tilt° and Roll° variations is larger, curvature
is larger, and when the amplitude is smaller, curvature is
smaller.

If, as considered here, the elastic constantsfii impeding
Tilt and Roll deformations are identical, the circular state
remains a conformational energy minimum even if the
constant-0.5 in eq 6 is replaced by other values. The
restraint energy of such a molecule, however, differs from
the ideal closed molecule in being greater than, albeit very
close to, zero. Thus, the constant in the phase of the cosine
functions in eq 6 is affected by the restraints in eq 2. For
example, if we place restraints on they-axes, rather than the
x-axes, of terminal base pairs, the constant is-3. The effect
of the starting structures on the optimized circular state,
however, is limited.

Uniform Twisting and Uptake of Energy. Figure 3 shows
the contributions of Tilt, Roll, and Twist to the dimer step
energy at sequential positions along three 200 bp DNA circles
in different minimum energy configurations: a torsionally
relaxed molecule, an overtwisted chain, and an undertwisted
chain with respective intrinsic Twist angles,θ3

u, of 36°,
35.5°, and 36.5°. Because the energetic patterns repeat every
10 bp, data are plotted, as above, for only the first 20 bp
steps. As reported in Table 2, the value of Twist° in the
minimum energy configuration shows only limited depen-
dence on the assumed intrinsic Twist. As a result, when the
intrinsic Twist angle is decreased, Twist° exceeds the intrinsic
value and the DNA is overtwisted. In the same way, when
the intrinsic value of Twist is increased, the DNA becomes
undertwisted. The change of intrinsic Twistθ3

u from the
value of 36° in the torsionally relaxed state introduces a
constant contribution to the dimer energy at every base-pair

step, a well-known property of a naturally straight, homo-
geneous elastic rod.24 Moreover, the energetic contributions
associated with the deformations of Tilt and Roll are
compensatory so that the dimer step energy is nearly constant
along the chain contour. The uniform energy density along
the chain is another well-known property of a naturally
straight elastic rod with constant curvature.24 This uniformity
does not hold, however, if the chain is subject to local
anisotropic bending, i.e., different force constantsfii for Tilt
and Roll.

Motions of Relaxed DNA Circles. The normal-mode
analysis of energy-minimized DNA circles provides informa-
tion on the frequencies and collective motions of the closed
chain. We concentrate here on the very low frequency normal
modes responsible for large-scale deformations of structure,
studying both torsionally relaxed DNA and molecules with
torsional stress. The normal modes of lowest frequency show
one of three types of large-scale deformation, namely in-
plane, out-of-plane, and torsional motions. These motions,
which are consistent with the predictions of elastic rod
theory,14,15 are illustrated schematically in Figure 4 and
reported as a function of frequency in the color-coded
“spectrum” in Figure 5(a). The in-plane bending motion of
the torsionally relaxed molecule involves changes in Tilt and
Roll, whereas the out-of-plane bending motions always
involve torsion. Local bending deformations also accompany
the global torsional motions.

“Free” Torsional Motions. The DNA remains circular in
the lowest (nearly zero) frequency mode, with the molecule
rotating as a whole about its helical axis; see Figures 4(a)
and 5(a), and the Supporting Information. Such behavior is
predicted by the theory of elastic rod deformations, i.e.,
modes associated withn equal to 0 or 1 must be nonflexural
and the rotation of the DNA in then ) 0 torsional mode is
unimpeded.30

Tilt° ) (360
nB

)cos(36(m - 0.5))

Roll° ) (360
nB

)cos(36(m - 0.5)+ 90)

Twist° ) 36 (6)

Figure 3. Dimer step energy (thick solid lines) and its bending
and twisting components (Tilt: thin solid lines; Roll: dashed
lines; Twist: dash-dotted lines) of (a) torsionally relaxed, (b)
overtwisted, and (c) undertwisted DNA molecules, which are
naturally straight at equilibrium, subject to an ideal elastic
potential, and closed via energy minimization into 200 bp
circles. The intrinsic Twist, θ3

u, is fixed respectively at 36°,
35.5°, and 36.5° in the three structures. Because of the regular
energetic patterns, data are shown for only the first 20 steps.
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The sequential variation of base-pair step parameters which
accompanies the “free” torsional motion is compared in
Figure 2 with the corresponding values in the equilibrium
reference state (filled-in vs corresponding open symbols).
The plot captures the values of Roll and Tilt in a 20 bp
fragment of the 200 bp circle at the instant when the energy
of the DNA is raised bykBT/(2 × 104). The very low-energy
threshold is a consequence of the extremely low frequency,
i.e., small energy change, of the mode and the limitation of
normal-mode analysis to conformational fluctuations in the
vicinity of the minimum energy state. (Step parameters lie
far away from the reference state if the mode is assigned a
higher energy.) Twist, by contrast, remains constant during
the process. Thus, the nearly free rotation of the helix as a
whole arises from concerted changes in local bending, rather

than twisting, over a 10 bp helical repeat. The regular pattern
of Roll and Tilt variations is emphasized by the cosine func-
tions superimposed on the computed points in Figure 2.

As long as the variation in bending parameters is small
compared to the range of Roll° and Tilt° in the minimum
energy state (the conditions under which normal-mode ana-
lysis holds), the Roll and Tilt values will simply move back
and forth along the chain contour, i.e., abscissa in Figure 2,
as the amplitude and direction of fluctuations change over
time. The resulting shift in the sites of maximum and
minimum bending leads to the global rotational motion. For
example, the minima of Roll° (thick solid lines) in Figure 2
occur at positions where the minor groove edges of base
pairs 3, 13, 23, etc. face the center of the circle. The shift of
phase associated with the normal mode moves base-pair steps
such as these on the inside of the circle to the outer surface
of the molecule, and vice versa, thereby producing rotational
motion around the helical axis.

In-Plane Bending. The second and third lowest frequency
modes correspond to in-plane motions, which deform the
DNA circle to elliptical shapes; see Figure 4(c) and the
Supporting Information. These modes with nearly equivalent
frequencies differ only in the direction of global distortion,
one mode generating a family of ellipses with major and
minor axes rotated∼45° with respect to the corresponding
axes of the second family of structures. Both the pure in-
plane character of the modes and the equivalence of the
frequencies are consistent with theoretical predictions. The
directional differences in the in-plane bending modes are seen
in the fluctuations of base-pair origins in the nonequilibrium
states with respect to the (n°, b°, t°) Serret-Frenet frames
embedded in each base pair of the minimum energy
(perfectly circular) reference state. The plots in Figure 6-
(a,b) show the base-pair displacements at the moment when
the potential energy of the DNA in the two modes is raised
by kBT/2. The uniformly zero displacements along theb°
axes of the planar circle (dashed lines in the figure) confirm
the pure, in-plane nature of molecular deformation, and the
larger sinusoidal displacements along then° and t° axes
(solid curves) the elliptical shapes. The major axes of the
ellipses captured in Figure 6(a,b) run parallel to the vectors
that join base pairs (20, 120) and (95, 195), respectively.
These pairs of points correspond to the minima in then°-
axis displacements in the two plots. The 25 bp phase shift
of corresponding curves of the two in-plane modes accounts
for the different directions of global motion. The similar,
yet out-of-phase pattern of conformational change observed
here is reminiscent of the doubly degenerate pure bending
modes of a linear DNA, with overall chain deflections in
perpendicular directions.1 Like the open chain, the closed
DNA effects global distortions exclusively through Tilt and
Roll, thereby qualifying as a bending mode; see Figure 7(a,
b). As with the linear molecule, the degeneracy of the in-
plane modes of a circular molecule is expected to break down
for particular sequential repeats.

Examination of Figure 7(a,b) shows that the maximum or
minimum fluctuations of Tilt and Roll appear at positions
where Tilt° and Roll° assume a maximum or minimum in
the equilibrium state and that the fluctuations are zero at

Figure 4. Schematic illustration of selected low-frequency
normal modes of a closed circular double helical DNA
molecule. The arrows denote the directions of bending or
twisting in each mode. Images (a,c,e) depict the lowest
frequency mode in each of the three types of global motions
and images (b,d,f) the second lowest frequency modes. The
values of n refer to indices used in elastic rod theory14,15 to
differentiate modes within the same class of motions. Double
helical images generated with MolScript.33

Figure 5. Color-coded spectra of the lowest frequency
torsional (unbroken red line), in-plane (unbroken blue line),
and out-of-plane (broken green line) modes of a 200 bp DNA
molecule, which is naturally straight in its equilibrium rest state,
subject to an ideal elastic potential, and closed into a circle
with different values of intrinsic Twist: (top) torsionally relaxed
(θ3

u ) 36°); (middle) overtwisted (θ3
u ) 35.5°); (bottom)

undertwisted (θ3
u ) 36.5°).
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steps where equilibrium values are zero. That is, the points
of maximum or minimum Tilt and Roll do not change
position in these two modes, a further indication that the
bending motions are restricted to the plane of the energy-
optimized circular structure. This pattern of dimer deforma-
tion in each of the modes is quite distinct from the traveling
waves of local bending associated with the “free” torsional
mode. The in-plane bending modes differ in phase such that
the largest changes in curvature in one mode occur at
positions where there are no deformations in the other mode
and vice versa.

Addition of the two in-plane bending modes, as repre-
sented in Figure 7(a,b), creates a standing wave of chain
deformation similar in character to each of its degenerate
components, i.e., the closed molecule oscillates between
circular and elliptical shapes via localized compensatory
changes in Tilt and Roll. If the two modes are not in phase,
the linear combination of modes produces a traveling
elliptical wave with the sites of maximal conformational
distortion moving over time along the chain contour (see
the Supporting Information). The direction of motion and
the magnitude of elliptical distortion of the traveling wave
depend on the difference in phase angle∆δ, i.e., the direction

of the movement reverses if the sign of∆δ (defined over
the range-180° < ∆δ e 180°) is changed. The proportions
of the traveling ellipse are constant only when∆δ ) (90°.
Otherwise, both the proportions and the sites of elliptical
deformation vary with time.

The local step parameters responsible for the one of the
in-plane bending modes, obtained by adding the computed
(∆Tilt, ∆Roll) deformations to the (Tilt°, Roll°) values that
describe the minimum energy state, are presented in
Figure 8. The agreement in phase of the (∆Tilt, ∆Roll)
variation with the trigonometric equations (Table 2) that
define the (Tilt°, Roll°) minimum energy state works
positively at some positions, increasing the amplitude, and
negatively at others, decreasing the amplitude. The amplitude
assumes a maximum at the 20th and 120th base-pair steps,
and minima at the 70th and 170th base-pair steps in the plot.
As noted above, the magnitude of the amplitude is propor-
tional to the curvature. Therefore, at the former pair of
antipodal base-pair steps, the curvature is larger, and at the
latter steps, the curvature is smaller than in the minimum
energy structure. A half cycle later, the situation reverses,
with lesser curvature found at the former positions and
greater curvature at the latter ones.

Out-of-Plane Bending. The fourth and fifth lowest normal
modes, also of close frequency, describe out-of-plane, cup-
like bending deformations of the DNA circle; see Figure 4(e)
and the Supporting Information. The null displacement, in

Figure 6. Displacement of base-pair origins and rotation of
base-pair axes at the moment when the potential energy is
raised by kBT/2 in selected normal modes of a 200 bp
torsionally relaxed DNA circle which is naturally straight in its
equilibrium rest state. Displacements (thin solid, dashed, and
thick solid lines) measured respectively along the n°, b°, t°
axes of Serret-Frenet frames embedded in each base pair of
the minimum energy DNA circle and found in (a,b) the pair of
lowest frequency (n ) 2) in-plane bending modes; (c) one of
the lowest frequency (n ) 2) out-of-plane bending modes; (e)
one of the second lowest (n ) 1) frequency “rocking” torsional
modes. Rotational fluctuations (dash-dotted line) found in (d)
one of the lowest frequency (n ) 2) out-of-plane bending
modes and (f) one of the second lowest (n ) 1) frequency
“rocking” torsional modes.

Figure 7. Fluctuations of local angular “step” parameters
which are collectively responsible for selected normal modes
of a 200 bp torsionally relaxed DNA circle which is naturally
straight in its equilibrium rest state and subject to an ideal
elastic potential: (a,b) the pair of lowest frequency (n ) 2)
in-plane bending modes; (c,d) the pair of lowest frequency
(n ) 2) out-of-plane bending modes; (e) one of the pair of
second lowest frequency (n ) 1) torsional modes. Plots
illustrate the fluctuations of Tilt (thin solid lines), Roll (dashed
lines), and Twist (thick solid lines) along the contour of the
DNA molecule at the moment when the potential energy of
the molecule is raised by kBT/2; fluctuations are reversed a
half cycle later of the mode.
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Figure 6(c), of base-pair origins in directions other thanb°
points to the pure out-of-plane character of the motions and
the uptake of deformation through Tilt and Roll in
Figure 7(c) to the role of bending. The major difference
between the two out-of-plane modes is the direction of
distortion, expressed at the local level by a 25 bp shift in
the pattern of conformational fluctuations and at the global
level by an orientational change of∼45°. Notably, the
profiles of conformational change responsible for the out-
of-plane modes are closely related to those associated with
the in-plane deformations; see Figure 7(a-d). Values of∆Tilt
and∆Roll associated with in-plane deformations attain local
maxima or minima at the base-pair steps that are unchanged
during out-of-plane distortions and vice versa.

There is a rotational motion of the bases in the out-of-
plane modes similar to that found in the lowest frequency
torsional mode, the “free” torsional mode. The degree of
rotation varies along the chain contour, and the direction of
rotation is of the opposite sense at positions 50 bp apart. If
adjacent segments of a perfect circular rod were to rotate in
the opposite sense, torsional stress would build up between
them, but as seen in Figure 7(c,d),∆Twist is approximately
zero in the out-of-plane modes. The torsional stress is
relieved by the displacement of antipodal segments of the
chain perpendicular to the plane of the circle. The fluctuations
of the base-pair origin along theb° axis in Figure 6(c) are
in perfect phase with the rotation of bases, monitored in
Figure 6(d) by the positions of (OBP - P) vectors on
successive base pairs. Such deformations also agree with the
theoretical expectation that the out-of-plane modes entail
torsional motions.

Higher-Frequency Modes. The majority of very low
frequency modes of the ideal DNA chain are either in- or
out-of-plane bending motions (see the color-coded spectrum
of frequencies in Figure 5(a)). Furthermore, the two types
of modes occur as closely spaced pairs, with the 2-fold
degeneracy of each mode leading to four independent
motions of close frequency. The pure in-plane or out-of-
plane character of the motions, however, disappears as the
frequencies become larger. For example, the out-of-plane
fluctuations (along theb°-axis) of the in-plane modes become

increasingly larger, and it becomes impossible to tell whether
the mode should be classified as an in-plane or an out-of-
plane mode. That is, fluctuations alongb° become compa-
rable to those alongn° and t°.

Like the bending modes of a naturally straight linear DNA
molecule, the number of pure in-plane or pure out-of-plane
bending modes of the circular chain is limited in number.
For both in- and out-of-plane modes,∆Tilt and ∆Roll
fluctuate in cycles of 10 bp steps, with null fluctuations of
parameters occurring simultaneously at several steps (nodes).
Reexamination of Figure 7(a-d) reveals four such nodes,
separated by 50 bp increments, for the lowest frequency in-
plane and out-of-plane bending modes of a 200 bp closed
circle. The number of nodes increases, and the distance
between adjacent nodes decreases as the frequency becomes
higher. If adjacent nodes approach too closely,∆Tilt and
∆Roll can no longer fluctuate in cycles of 10 bp steps,
thereby limiting the number of pure in-plane or out-of-plane
modes. The 200 bp DNA circle has only eight pairs of fairly
pure in-plane modes and eight pairs of fairly pure out-of-
plane modes, with the highest frequencies of the in-plane
modes being 0.869 cm-1 and 0.870 cm-1, and those of the
out-of-plane modes 0.877 cm-1 and 0.878 cm-1. There are
18 nodes in these four higher frequency modes.

A second (n ) 1) torsional mode, which preserves the
circular structure of DNA and allows for the opposing
rotation of base pairs around the helical axis, is found at
higher frequency (Figures 4(b) and 5(a) and the Supporting
Information). As is clear from Figure 6(e,f), the rotational
motion (illustrated in the latter plot) is accompanied by small
((0.1 Å) out-of-plane base-pair displacements (dashed
curves in the other plot). The latter features are consistent
with the small oscillatory rocking motion predicted by elastic
rod theory for this mode.14 [The term rocking is characteristic
of a standing mode; the motions of the traveling modes
generated by the linear combination of degeneraten ) 1
torsional modes resemble those of a precessing top.] The
opposing rotations at antipodal sites on the circle introduce
torsional stress on the intermediate regions, leading to the
build-up of ∆Twist illustrated by heavy solid lines in
Figure 7(e). The bending angles are unchanged at the sites
of maximum over- and underwinding but are maximally
perturbed when∆Twist is zero. The patterns of∆Tilt and
∆Roll resemble those for the out-of-plane bending motions
in terms of the∼10 bp phase of the computed fluctuations.
The sites that bend more strongly or become more straight-
ened around the closed structure are more widely spaced
along the chain contour than the sites of strongest and
weakest bending in the out-of-plane mode, i.e., repetition at
∼100 bp vs∼50 bp intervals. A degenerate torsional mode
of the same type introduces torsional stress and bends the
DNA in the same fashion but is displaced 50 bp further along
the chain contour. The degeneracy of then ) 1 torsional
mode also matches theoretical expectations.

Motions of Supercoiled Molecules.Normal-Mode Fre-
quencies.Slight over- or undertwisting of the DNA circle
introduces subtle changes in the computed normal-mode
frequencies. As evident from the color-coded spectra of
lowest frequency modes in Figure 5(a-c), the torsional

Figure 8. Values of Tilt and Roll (solid and dashed lines)
along the contour of a 200 bp torsionally relaxed DNA circle
at the moment when the potential energy is raised by kBT/2
by lowest frequency (n ) 2) in-plane bending motions. Data
are obtained by adding the bending fluctuations in Figure 7(a)
to the energy-optimized parameters of the covalently closed,
molecule in Figure 2.
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modes (unbroken red lines) of the overtwisted (θ3
u ) 35.5°)

and undertwisted (θ3
u ) 36.5°) molecules appear to coincide

with those of the torsionally relaxed circle of the same length
(200 bp), but the spacing between in-plane and out-of-plane
frequencies (unbroken blue and broken green lines, respec-
tively) differs. The in-plane bending motions of the super-
coiled chains are consistently lower in frequency (energy)
and the out-of-plane motions are consistently higher in value
than the corresponding modes of the relaxed circle, with the
differences becoming more pronounced as the frequencies
of the modes increase. These trends match theoretical
expectations as detailed below.

Mixed Bending Modes. Elastic rod theory predicts that pure
in-plane or out-of-plane modes do not exist when the ideal
rod is torsionally stressed. This is also true in our DNA
model. Figure 9 illustrates the mixed nature of global
structural fluctuations for two 200 bp chains with intrinsic
Twist 35.5° and 36.5°. As is clear from Figure 9(a,b), the
base-pair origins undergo small ((3 Å) out-of-plane dis-
placements along theb° axes of the planar circle (dashed
curves) as the molecule concomitantly deforms to elliptical
shapes, and as evident from Figure 9(c,d), the chain fluctuates
along then° andt° axes in the plane of the ring (solid curves)
as it also bends out-of-plane to cup-like shapes. Thus, the
former mode is no longer a pure in-plane bending mode,
and the latter is no longer a pure out-of-plane bending mode
if the circular molecule is torsionally stressed.

Comparison of Figure 9 with the corresponding plots in
Figure 6(a-c) for the torsionally relaxed circle shows that
the normal modes of the supercoiled rings are combinations
of pure in-plane and pure out-of-plane bending modes. For
example, the low-frequency bending mode of the overtwisted
DNA molecule in Figure 9(a), with intrinsic Twist 35.5°, is
obtained by combining the in-plane mode of the relaxed

circle from Figure 6(a), with the out-of-plane mode in
Figure 6(c). Figure 9(b-d) are obtained in a similar fashion.

The variation of Tilt and Roll reflects this combination of
pure in-plane and out-of-plane bending motions. The fluctua-
tions of ∆Tilt and ∆Roll in the lowest frequency bending
modes of the over- and undertwisted DNA circles are a
mixture of the change in step parameters that accompany
pure in-plane and out-of-plane bending of the relaxed circle.
The labels of the mixed bending modes are described by
the more dominant of the two modes. Thus, the “in-plane”
modes of the supercoiled circles have more pure in-plane
than pure out-of-plane character, and the pure out-of-plane
deformations outweigh the pure in-plane contributions to
∆Tilt and ∆Roll in the out-of-plane modes.

Comparison with Theory. Chain Length Dependence. To
study the dependence of the normal modes on chain length,
we created five torsionally relaxed circular DNAs of different
lengths160, 180, 200, 220, 240 bp, and performed normal-
mode analyses of each chain. Figure 10(a) shows the
frequencies of the two lowest pairs of in-plane bending
modes and the two lowest pairs of out-of-plane bending
modes as a function of chain length. The degeneracy of the
bending modes is evident from the superposition of computed
frequencies, with one of each pair of modes denoted by an
open box and the other by a cross symbol. The overlap of
these values with the theoretically predicted frequencies14,15

of an inextensible, naturally straight, homogeneous rod closed
into a circle, shown by the solid curves in the figure, is re-
markable (the numerical agreement is within 3× 10-4 cm-1).

As mentioned earlier, the theoretical frequencies are
determined in units of (4/r3)(A/πF)1/2, wherer is the radius
of the elastic rod andF is its mass density. To make the
comparison with the calculated values, we use a bending

Figure 9. Displacement of base-pair origins of (a,c) over-
twisted (θ3

u ) 35.5°) and (b,d) undertwisted (θ3
u ) 36.5°) DNA

circles along the n°, b°, t° axes of Serret-Frenet frames
embedded in each base pair of the minimum energy DNA
circle. Data reported at the moment when the potential energy
of the naturally straight, 200 bp molecule is raised by kBT/2
in selected normal modes: (a,b) one of the lowest (n ) 2)
frequency, predominantly in-plane bending modes; (c,d) one
of the lowest (n ) 2) frequency, predominantly out-of-plane
bending modes. See legend to Figure 6.

Figure 10. Normal-mode frequencies of (a) the two lowest
(n ) 2, 3) pairs of in-plane bending modes and the two lowest
(n ) 2, 3) pairs of out-of-plane bending modes and (b) the
three lowest (n ) 0, 1, 2) torsional modes, as a function of
chain length, of a torsionally relaxed circular DNA, which is
naturally straight in its equilibrium rest state and subject to
an ideal elastic potential. The degeneracy of certain modes
is evident from the computed frequencies, which are distin-
guished by the open boxes and cross symbols. The theoreti-
cally predicted chain length dependence of the frequencies,
based on elastic rod theory,14,15 is shown as solid lines. Note
that the out-of-plane modes have higher frequencies than the
in-plane modes of corresponding n.
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rigidity A of 2.066× 10-19 erg-cm deduced in Table 1 from
the minimum energy circular state and set the radiusr to
9.45 Å. This value ofr is obtained by equating the inertial
moment around the longitudinal axis of a straight rod of
circular cross-section (M r2) to the corresponding value for
a B-DNA helix (calculated as a summation over all atoms
of the DNA, Σmiri

2, wheremi is the mass ofith atom andri

is the displacement of the atom from the helical axis). See
ref 31 for the computational procedure used to locate the
helical axis. A mass density of DNA of 0.065 g/mol-Å3 is
used. Finally, the circular frequency unit (1.17× 1012 Hz)
has been converted to wavenumbers, cm-1.

The numbern in Figure 10 is the index used in the theory
to differentiate normal modes within the same class of
motions (i.e., in-plane, out-of-plane, or torsional modes) and
is equal to half the number of nodes found in the mode. As
evident from the figure and from earlier discussion of the
torsionally relaxed 200 bp circle, out-of-plane modes have
higher frequencies than in-plane modes of correspondingn.
The similar chain length dependence of the computed and
theoretically predicted frequencies of the three lowest
torsional modes is apparent in Figure 10(b). The agreement
between numerical values is again quite good, despite the
fact that the theoretically predicted frequency of then ) 0
torsional mode is zero and the computed values are small
nonzero values.

Twist Dependence. As noted above, the DNA circle can
be supercoiled by changing the value of the intrinsic Twist
θ3

u. For example, a change of the intrinsic Twist of a 200 bp
DNA circle from the value of 36° found in the torsionally
relaxed state to 35.5° introduces excess Twist in the
molecule, 200× (36-35.5)° ) 100°. The latter value is one
of the variables used in the analytical treatment of the normal-
mode frequencies of a closed elastic ring.14,15 The theoreti-
cally predicted frequencies of the lowest (n ) 2) in-plane
and out-of-plane bending modes are compared with values
computed, respectively, for over- and undertwisted 200 bp
circular DNA molecules in Figure 11(a,b). The agreement
is again quite good, with the frequencies of the dominant
in-plane mode reduced when the molecule is over- or

undertwisted and the frequencies of the dominant out-of-
plane mode increased under the same conditions.

In agreement with the theoretical method described in
connection with eq 3 to determine the normal-mode frequen-
cies, the torsional mode frequencies are nearly independent
of excess twist. The respective frequencies of then ) 1 and
n ) 2 torsional modes of a 200 bp circle are predicted by
the theory to be 0.2281 and 0.4561 cm-1. The average values
of the corresponding normal-mode frequencies of 11 different
DNA circles, with intrinsic Twist varied from 35.5° to 36.5°
at increments of 0.1°, are 0.2282 and 0.4562 cm-1. Each of
these modes is doubly degenerate, with some slight differ-
ences in the computed standard deviations of normal-mode
frequencies: 2.82 vs 2.25× 10-6 cm-1 and 4.60 vs 2.96×
10-6 cm-1 for the respective modes. The very small
deviations show that the computed frequencies are essentially
independent of added Twist, in further agreement with
predictions of elastic rod theory.

Conclusions
The motions of an ideal, closed circular DNA molecule
obtained in the present normal-mode calculations show
remarkable agreement with the theoretically predicted dy-
namic properties of an elastic rod. The energy-optimized
closed circular states and the types of low frequency motions
of a 200 bp molecule which is naturally straight in its relaxed
linear state, inextensible, and capable of isotropic bending
and twisting of adjacent base pairs, reproduce a wide variety
of features, including (1) the uniformity of twist density and
energy density in the minimum energy state; (2) the near
zero frequency “free” torsional mode of the torsionally
relaxed circle; (3) the higher-order torsional rocking modes
and the pure in-plane and out-of-plane bending motions of
the relaxed circle; (4) the mixed bending modes of the
supercoiled chain; (5) the degeneracy of modes; and (6) the
changes in normal-mode frequencies with variation of chain
length and imposed supercoiling. The successful comparison
validates extension of the computational procedure to study
effects of specific base sequences on the supercoiled states
and global motions of more realistically modeled DNA
minicircles.

The curves fitted to the sequential variation of step
parameters in both the minimum energy configuration and
the different normal modes reveal the interplay between local
conformational motions and global chain dynamics. The
patterns of local conformational deformation responsible for
the overall motions of the closed duplex persist in more
realistically modeled DNA minicircles and, as illustrated in
the companion article,32 can be used to understand the effects
of intrinsic curvature on large-scale global motions.
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Figure 11. Normal-mode frequencies of the lowest (n ) 2)
pair of (a) in-plane and (b) out-of-plane bending modes, as a
function of intrinsic Twist, θ3

u, of a 200 bp circular DNA
molecule, which is naturally straight in its equilibrium rest state.
See legend to Figure 10.
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Supporting Information Available: Animation files
of the normal modes of a 200 bp, torsionally relaxed, closed
circular DNA molecule, which is naturally straight in its
equilibrium rest state and subject to an ideal elastic potential.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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Abstract: Fine structural and energetic details embedded in the DNA base sequence, such as
intrinsic curvature, are important to the packaging and processing of the genetic material. Here
we investigate the internal dynamics of a 200 bp closed circular molecule with natural curvature
using a newly developed normal-mode treatment of DNA in terms of neighboring base-pair “step”
parameters. The intrinsic curvature of the DNA is described by a 10 bp repeating pattern of
bending distortions at successive base-pair steps. We vary the degree of intrinsic curvature
and the superhelical stress on the molecule and consider the normal-mode fluctuations of both
the circle and the stable figure-8 configuration under conditions where the energies of the two
states are similar. To extract the properties due solely to curvature, we ignore other important
features of the double helix, such as the extensibility of the chain, the anisotropy of local bending,
and the coupling of step parameters. We compare the computed normal modes of the curved
DNA model with the corresponding dynamical features of a covalently closed duplex of the
same chain length constructed from naturally straight DNA and with the theoretically predicted
dynamical properties of a naturally circular, inextensible elastic rod, i.e., an O-ring. The cyclic
molecules with intrinsic curvature are found to be more deformable under superhelical stress
than rings formed from naturally straight DNA. As superhelical stress is accumulated in the
DNA, the frequency, i.e., energy, of the dominant bending mode decreases in value, and if the
imposed stress is sufficiently large, a global configurational rearrangement of the circle to the
figure-8 form takes place. We combine energy minimization with normal-mode calculations of
the two states to decipher the configurational pathway between the two states. We also describe
and make use of a general analytical treatment of the thermal fluctuations of an elastic rod to
characterize the motions of the minicircle as a whole from knowledge of the full set of normal
modes. The remarkable agreement between computed and theoretically predicted values of
the average deviation and dispersion of the writhe of the circular configuration adds to the
reliability in the computational approach. Application of the new formalism to the computed modes
of the figure-8 provides insights into macromolecular motions which are beyond the scope of
current theoretical treatments.

Introduction
Although the average properties of polymeric DNA resemble
those of an ideal elastic rod, the fine structure of the double

helix carries a sequence-dependent structural and energetic
code which helps to organize the overall folding of the long,
threadlike molecule, and which also governs the susceptibility
of DNA to interactions with other molecules. Individual base-
pair steps adopt characteristic spatial forms and show
different deformational tendencies in high-resolution struc-

tures.1 These local turns and twists, if appropriately concat-
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enated and then repeated in phase with the (∼10 bp/turn)
double helical repeat, introduce a natural “static” curvature
or superhelicity in the DNA,2-4 which in turn guides the
spatial arrangements of longer molecules.5-7

Calculations that account for the natural curvature of DNA
indicate that polymers with such features adopt completely
different three-dimensional arrangements from an ideal,
naturally straight elastic rod. For example, a naturally closed
circular duplex is expected to take up ligand-induced
superhelical stress through out-of-plane folding, gradually
converting at natural levels of supercoiling into a 2-fold
symmetric collapsed (clamshell-like) figure-8 configura-
tion,8-15 whereas a closed ideal rod retains a circular shape
and snaps suddenly into a plectonemic structure at a
characteristic level of supercoiling.16-18

The effect of curvature on the dynamical features of DNA,
such as the retarded movement of naturally curved sequences
on electrophoretic gels, is less well understood. Most
modeling studies of the dynamics of naturally curved helices
have focused to date on the variation of chemical fine
structure extracted from all-atom simulations of the motions
of short oligonucleotide duplexes.19-24 Other work has
addressed the bending, spinning, and tumbling of the
molecule as a whole in the context of the physical manipula-
tion of naturally curved elastic rods,25 time-resolved electron
microscopic images of single naturally curved molecules,26

and selected spectroscopic properties of DNA chains con-
taining curved fragments, e.g., electric dichroism decay and
fluorescence depolarization of intercalated ethidium dyes in
short, naturally curved sequences.27,28

Much less is known about the internal dynamics of
supercoiled molecules with intrinsic curvature. The insertion
of curved sequences in a naturally straight DNA is reported
to reduce the internal motions that underlie the dynamic light
scattering of supercoiled plasmids.29 That is, the global
configuration of the closed circular molecule is stiffened in
the presence of curved DNA such that the likelihood of close
approach between interacting fragments is increased and the
slithering of individual residues past one another is de-
creased.30 By contrast, sufficient increase in the intrinsic
curvature of a closed circular molecule introduces a bimodal-
ity in the distribution of Monte Carlo simulated configura-
tions of DNA.31

In this paper, as a next step in understanding the behavior
of curved DNA, we investigate the internal dynamics of a
covalently closed, naturally circular double helix. We
compare the computed normal modes of such a molecule
with the corresponding dynamical features of a cyclized
duplex of the same chain length constructed from naturally
straight DNA and with the theoretically predicted dynamical
properties of a naturally circular, inextensible elastic rod.
We present and make use of a general analytical treatment
of the configurational fluctuations of an elastic rod. We
examine mesoscopic pieces of DNA, fragments too long to
investigate at the all-atom level and too complex to ap-
proximate as hinged objects, e.g., rigid rods connected by
flexible joints. We vary the degree of intrinsic curvature and
the superhelical stress on the DNA and consider the normal-
mode fluctuations of both the circle and the stable figure-8

configuration under conditions where the energies of the two
states are comparable. In this way we are able to decipher
the low frequency modes and the enhancement in overall
flexibility that underlie the large-scale rearrangement of the
naturally curved molecule between the two configurations
and gain new insight into the circle to figure-8 transition of
supercoiled DNA.

Methods
Computational Treatment. We consider a chain which
forms a closed minicircle in its equilibrium rest state. The
rest state is defined by the base-pair step parameters identified
in the companion paper32 for the energy-minimized circular
form of a DNA molecule which is naturally straight at
equilibrium. The natural minicircle is thus described by a
10 bp repeating pattern of intrinsic local structure, with the
bending components at each base-pair step, (θ1

u, θ2
u), equat-

ed to the values of Tilt° and Roll° along the contour of the
minimized circular configuration. Values of Tilt and Roll
used as references in the calculation of energy, i.e.,θ1

u and
θ2

u in eq I-1, where theI refers to the companion paper,32

thus depend on chain length and imposed intrinsic Twist (see
Table I-2). The treatment is applicable to lengths of DNA
such that, when the molecule is constrained to be planar,
the total twist of the ideal minicircle,Tw ) Σ θ°3/360°, is an
integer. Here this constraint is satisfied by choosingθ°3 for
the planar molecule to be 36° at all base-pair steps andnB,
the number of base-pair steps, to be 200. The normalized
sum, which is equal to 20 is the linking numberLk of the
closed ring, i.e., the number of times the two strands of the
double helix wrap around one another. Values of the intrinsic
Twist θ3

u are assumed, however, to be independent of
sequence and are assigned a range of values consistent with
known environmentally induced changes, e.g., the depen-
dence on temperature or ionic strength.33-35 If there are no
spatial constraints on the ends of the chain, the variation of
θ3

u to a value different fromθ°3 converts the circular
equilibrium structure to a helical configuration.36-39 If the
chain ends are covalently linked, the total increase or
decrease of intrinsic Twist relative to the unligated structure,
∆Tw° ) (θ°3 - θ3

u)nB/360°, imposes torsional stress on the
naturally circular molecule. The excess twist in the closed
circular configuration,∆Tw°, is equal to-τuL/2π, whereτu

is the torsion of the helical pathway of the unlinked chain
with intrinsic Twist θ3

u and L is the length of the helical
axis.39-41 (The quantity∆Tw°, frequently called the linking
number difference∆Lk, is the sum of the excess twist∆Tw
and the writhing numberWr, or writhe for short, of any other
configuration.) The molecule is assumed to be inextensible
with the displacement of base pairs assigned values charac-
teristic of B DNA, namely zero values of Slide and Shift
and a Rise of 3.4 Å. The contour lengthL is therefore equal
to 3.4nB Å.

The natural minicircle is subject to the same simplified
elastic potential as the ideal, naturally straight, inextensible
DNA molecule treated in the companion paper.32 That is,
the molecule bends isotropically at all base-pair steps, and
the deformations of individual base-pair step parameters are
independent of one another. Even though the equilibrium
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structure of the DNA is a closed circle, restraints must be
introduced in the normal-mode analysis to ensure that the
chain termini are connected in the nonequilibrium states.
Otherwise, the two ends of the double helix would fly apart
as the chain undergoes conformational fluctuations. Thus, a
restraint energy term like eqI-2 is included in the potential
energy function, and an energy minimization step is carried
out prior to normal-mode calculations.

Analytical Treatment. It was pointed out in paperI, in a
discussion of some of the results of an analytical treatment
of the normal modes of a circular DNA formed from a
naturally straight elastic rod, that the normal-mode frequen-
cies can be obtained by finding the roots of a polynomial
cubic in the square of the frequencies. The same turns out
to be the case for circular rings formed from intrinsically
curved rods.39 In this paper we compare the frequencies of
some of the computed low-order modes of a naturally closed
DNA minicircle with those determined from the analytical
theory.

The ensemble average of various properties of a collection
of identical elastic rods in thermal equilibrium at a temper-
atureT can be extracted from the configuration integral

an integral of exp[-Eη/kBT] over all configurations, where
Eη is the elastic energy of the rod in a configuration denoted
by η andkB is the Boltzmann constant. Since for the small
rings we treat here, the only configurations which make a
significant contribution toZ are those close to the equilibrium
configuration, we first rewrite eq 1 in the form

where

andEe is the elastic energy of the equilibrium configuration.
To obtain information about the distribution of the writhe
Wr for the ring-like molecules being considered here, it turns
out, as we show below, that what is needed is the explicit
dependence ofEη - Ee on the topological invariant, the ex-
cess twist∆Tw° characterizing the circular equilibrium con-
figurations. Only the elastic twist energy contains a term that
explicitly involves∆Tw°, namely, (2π2C/L)(∆Tw° - Wr)2,
whereC is the twisting modulus. Therefore there is only
one term in Eη - Ee which contains∆Tw° explicitly,
-(4π2C/L)∆Tw°∆Wr, where∆Wr is the writhe associated
with a configuration relative to that in the equilibrium
configuration. Given the form of this expression, if the
integration in eq 3 is now carried out over all configurations
of a given writhe,z is of the form

whereF(Wr) is a function of the writhe alone.
The integrand in eq 4 represents the distribution function

for the writhe. We see that〈∆Wr〉, the ensemble average of

the writhe relative to that in the equilibrium configuration
is given by

The variance of the writhe,〈Wr2〉 - 〈Wr〉2, is obtained by
differentiating lnz again, or, given eq 5, it can be written

For small elastic rings, the configuration integral is
proportional to the high-temperature form of the partition
function for a collection of harmonic oscillators having the
frequenciesωi(∆Tw°) of the normal modes of the elastic ring.
That is,z(∆Tw°) is proportional to the product

wherep is Planck’s constant divided by 2π. Knowing the
dependence of the normal-mode frequencies on∆Tw° is
therefore sufficient for determining the average writhe and
the variance of the writhe.

In a later section we also compare the average writhe, as
given by eq 5, and the variance of the writhe, as given by
eq 6, for the two approaches, the computational treatment
and the analytical theory.

Results and Discussion
Natural Minicircle. We start with a 200 bp DNA minicircle
with an equilibrium Twistθ3

u ) θ°3 ) 36°, i.e.,Lk ) 20, and
local intrinsic bending, given by the variation of Tilt° and
Roll° in Table I-2, which naturally closes the chain into a
circle. As evident from the color-coded spectrum of lowest
frequency normal modes in Figure 1, the naturally circular
molecule exhibits the same kinds of global motions as a
straight chain with covalently linked ends in the torsionally
relaxed state, namely in-plane and out-of-plane bending
(unbroken blue and broken green lines, respectively) plus
large-scale torsional movements of the polymer (red lines)
about the circular helical axis. Unlike circles made up of
naturally straight DNA, where the ease of in-plane and out-
of-plane bending differs, the frequencies of in-plane and out-
of-plane deformations of the closed naturally circular mol-
ecule are virtually identical. Moreover, these frequencies are
roughly equivalent to the frequency of in-plane bending of
a cyclized naturally straight chain (FigureI-5).

Z ) ∫ e-Eη/kBT dη (1)

Z ) e-Ee/kBTz (2)

z ) ∫e-(Eη-Ee)/kBTdη (3)

z ) ∫- ∞

+ ∞
e[4π2C/LkBT]∆Two∆WrF(Wr)dWr (4)

Figure 1. Color coded-spectrum of lowest frequency torsional
(unbroken red line), in-plane (unbroken blue line), and out-
of-plane (broken green line) modes of a 200 bp torsionally
relaxed, inextensible, naturally circular DNA molecule subject
to an ideal elastic force field.

〈∆Wr〉 ) (LkBT

4π2C) ∂lnz

∂∆Two
(5)

〈Wr2〉 - 〈Wr〉2 ) (LkBT

4π2C)∂〈∆Wr〉
∂∆Two

(6)

Π
i

kBT

pωi(∆Tw°)
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The difference in the out-of-plane bending modes of
naturally circular vs naturally straight DNA arises from a
different pattern of local conformational motions. The
fluctuations in base-pair step parameters (∆Tilt, ∆Roll,
∆Twist) which give rise to the lowest frequency in-plane
and out-of-plane motions of a 200 bp covalently closed,
naturally circular molecule, are reported in Figure 2.
Comparison of these plots, which capture the local confor-
mational distortions at the instant when the energy of the
DNA is raised bykBT/2, with those computed for the straight
molecule closed into a circle (FigureI-7) reveals a notable
difference in the twisting of the intrinsically curved chain.
Whereas∆Twist is close to zero for the out-of-plane
deformations of straight DNA, it assumes nonzero values
for the corresponding changes in the natural minicircle. By
contrast, the patterns of fluctuations associated with the in-
plane modes are similar for the two types of circular
molecules.

The nonzero∆Twist in the out-of-plane modes is a natural
consequence of intrinsic curvature. Suppose we have a
straight piece of DNA with unlinked ends and a planar,
curved molecule, e.g., a fragment of naturally circular DNA,
with the same contour length and we introduce the same
amount of excess Twist at the central base-pair step in the
two molecules. The straight DNA retains its original linear
global shape, but the curved DNA responds to the imposed
deformation through an out-of-plane configurational rear-
rangement. A DNA which is intrinsically more curved would
undergo an even larger out-of-plane movement. The out-of-
plane motions of intrinsically curved DNA can thus be
effected by changes of Twist as well as by changes of Tilt
and Roll, and a more curved piece of DNA can undergo
out-of-plane motions more easily. Although the situation is
complicated by the constraints of covalent bond formation
in cyclic molecules, the involvement of nonzero∆Twist

persists in the out-of-plane modes of naturally circular DNA.
Just as a linear molecule of greater curvature undergoes larger
out-of-plane movements than a straighter fragment subject
to the same amount of added Twist, a circular DNA molecule
made up of highly curved pieces is expected to have lower
out-of-plane bending frequencies and larger contributions
from ∆Twist to the normal modes of bending than a cyclized
molecule constructed from naturally straight DNA.

As is clear from comparison of Figures 1 andI-5, the
torsional frequencies of the intrinsically curved molecule are
much higher than those of a cyclized, naturally straight DNA
molecule. Whereas the lowest frequency torsional mode of
a naturally straight chain closed into a circle is very close to
zero, the corresponding frequency of the natural minicircle
is much higher. The same conformational mechanism,
namely concerted changes in Tilt and Roll, which move base
pairs from the inside to the outside of the circle and vice
versa, effects global torsional movements in the two mol-
ecules. The deformations, however, place a greater confor-
mational energy penalty on the natural minicircle than on
cyclized straight DNA. The uniformity of equilibrium Tilt
and Roll in the straight chain,θ1

u ) θ2
u ) 0°, gives rise to a

residue-invariant contribution to the bending energy, that
allows for all rotational orientations of base pairs and
consequent “free rotation” of base pairs about the global
helical axis. The corresponding shift of Roll and Tilt in the
naturally circular molecule is energetically more costly than
that in the straight chain. As a result, the naturally circular
DNA has a higher barrier to large-scale helical rotation and
higher (n ) 0) torsional frequencies than a closed, intrinsi-
cally straight, ideal rod.

DNA Circles with Variable Intrinsic Curvature. We
next consider a series of naturally curved molecules of
varying intrinsic curvatureκu, but all of a length correspond-
ing to 200 bp and all planar (τu ) 0) in their undeformed
open configuration. As discussed previously, when the
condition of a uniform double helical repeat of 10 bp per
turn is also satisfied, the closed, torsionally relaxed, circular
molecule having a curvatureκ° ) 2π/200∆s, where (base-
pair displacement)∆s ) 3.4 Å, is in a minimum energy
configuration. We report in Figure 3 the dependence of the
frequencies of various kinds of global deformations on the
valueq ) κu/κ° for a series of such 200 bp DNA minicircles.
(For a given value of the ratioC/A of the torsional and
bending constants, there is a value ofq, above which the
circle is no longer stable.39 In the present case, this occurs
for a value ofq somewhat greater than 2.) Note that, although
the values of Tilt, Roll, and Twist of the minimum energy
configurations of the minicircles are independent ofq, the
amplitudes of Roll and Tilt differ from that in the open
undeformed configurations (see TableI-2) by an amount
(1 - q) 360°/200. We can thus state that the elastic bending
energy of the minicircles is proportional to (1- q)2. The
ratio q can also be expressed in terms of the contour length
L̃, measured in base pairs, for which the open molecule would
form a complete circle, namely,q ) 200/L̃.

The variation of the computed lowest frequency (n ) 0)
torsional mode in Figure 3(a) shows remarkable agreement
with the theoretically predicted dependence onq.41 The

Figure 2. Fluctuations of local angular “step” parameters
which are collectively responsible for selected normal modes
of a 200 bp torsionally relaxed DNA which forms a natural
minicircle in its equilibrium rest state and is subject to an ideal
elastic potential: (a) one of the pair of lowest frequency
(n ) 2) in-plane bending modes and (b) one of the pair of
lowest frequency (n ) 2) out-of-plane bending modes. Plots
illustrate the fluctuations of Tilt (thin solid lines), Roll (dashed
lines), and Twist (thick solid lines) along the contour of the
DNA molecule at the moment when the potential energy of
the molecule is raised by kBT/2; fluctuations are reversed a
half cycle later of the mode.
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numerical data (open circles) closely match the expected
proportionality to q1/2 (smooth curve). As observed in
paperI, the lowest torsional frequency of a circle made from
a naturally straight rod is zero. Here we see that this behavior
follows from the null value ofq. Moreover, the computed
magnitude of the lowest torsional frequency of the naturally
curved molecules is identical to the theoretically predicted
value, e.g., a computed and predicted frequency of
0.19253 cm-1 for the naturalq ) 1 minicircle.

There is similar correspondence in Figure 3(b) between
the computed and theoretically predicted frequencies of the
lowest (n ) 2) in-plane and out-of-plane bending modes of
circular molecules with different degrees of intrinsic curva-
ture. As noted above, the frequency of the out-of-plane
bending mode is higher than that of the in-plane mode if
the molecule is naturally straight (q ) 0) but is of comparable
magnitude if the DNA forms a natural minicircle (q ) 1).
The two modes are predicted by the theory to be identical
in the present case whenq ) 1.06 and found by the
calculations to be equivalent at approximately the same value.
(An exact comparison is precluded by the limitations on chain
length in the calculations, i.e., multiples of 10 bp.32) The
ease of out-of-plane bending becomes greater than that of
in-plane deformation, i.e., of lower frequency and lower
energy, ifq exceeds this threshold. That is, molecules which
are more strongly bent, i.e., chains which cyclize into smaller
rings than the natural minicircle, show a natural tendency to
fluctuate out of the plane of the 200 bp circle. Indeed, when
q ) 2 andC/A ) 1 and the molecule is closed into a circle
two times the length of its equilibrium rest state, the barrier
to out-of-plane deformations is removed, and the frequency
of the mode is close to zero.39,42By contrast, the frequencies
of the in-plane modes of the torsionally relaxed minicircle
are predicted and found through computation to be constant
over this range ofq.

The difference in Twist fluctuations noted above for circles
of naturally straight and naturally circular DNA also depends
on the value ofq. That is, whenq is small, the amplitude of
∆Twist in the out-of-plane bending modes is small compared
to that of either∆Tilt or ∆Roll, but asq increases in value,
the amplitude of ∆Twist becomes comparable to the
amplitudes of the local bending parameters (data not shown).

Properties of Supercoiled Molecules.Figure-8 Minimum.
As with naturally straight DNA, superhelical stress can be
introduced into the natural minicircle by changing the
intrinsic Twist. If the change is sufficiently large, a global
configurational rearrangement takes place, with the DNA
adopting a figure-8 rather than a circular minimum energy
state. This transition also occurs in closed molecules made
up of naturally straight DNA,17,18but since there are no self-
contact terms43 in the present calculations, the figure-8
configuration of a naturally straight DNA is unstable and
not found upon energy minimization. In the case of naturally
circular DNA, energy minimization identifies a figure-8
minimum energy structure, which makes it possible to
monitor details of the large-scale (circle to figure-8) spatial
rearrangement.

Here we again study a 200 bp natural DNA minicircle
subject to the same ideal elastic force field employed above,
i.e.,A ) 2.1× 10-19 erg-cm,C ) 2.9× 10-19 erg-cm. The
equilibrium values of the base-pair step parameters are taken
from the expressions for Tilt° and Roll° in Table I-2 or eq
I-6, which close a naturally straight molecule of specified
length and equilibrium Twist,θ°3, into a circle. The transi-
tion to the figure-8 occurs when the intrinsic Twistθ3

u

differs by about(1.8° from θ°3, changes which are equiva-
lent to the introduction of(360° of additional twist into the
DNA. By contrast, 1.25 additional helical turns are required
to effect the interchange of stability between a closed circle
and the figure-8 configuration of naturally straight DNA
under the same elastic potential, i.e., a critical twist increment
of (x3 A/C helical turns.16-18 Figure 4 shows the mini-
mum energy figure-8 structure obtained when the intrinsic
Twist of the minicircle differs fromθ°3 by (1.8°, i.e., θ3

u )
34.2°, 37.8°. As is clear from the color coding in the figure,
the Twist of individual base-pair steps is nonuniformly
distributed along the two configurations. The uptake of Twist
is concentrated in the center of the structures. The twisting
of successive base pairs remains close to the 36° value
characteristic of torsionally relaxed DNA in the 180° turns
at the two (hairpin) ends of each structure. The slight dif-
ference in the respective writhes of the two figure-8’s,+1.05
and-1.05, from the values ((1) characteristic of the ideal
planar forms reflect the finite radius of the DNA model (∼10
Å). Details of the best-fit cosine functions, which describe
the variation of base-pair step parameters along the minimum
energy structures, are summarized in Table 1. The two
dominant terms are presented. Comparison of these functions
with those fitted to the minimum energy circular state
adopted by the same chain (TableI-2) reveals an additional
cosine term of wavelength of 11.1 bp or 9.1 bp, numbers
corresponding respectively to 10/9 or 10/11 of the 10-fold
helical repeat of the relaxed equilibrium state.

Figure 3. Normal-mode frequencies for (a) the n ) 0 torsional
and (b) the n ) 2 in-plane and out-of-plane bending modes
of naturally curved molecules which are closed into a chain
of 200 bp. Data are reported as a function of the ratio
q ) κu/κ° of the intrinsic curvature κu to the curvature κ° of
the minimum energy configuration of the natural minicircle.
Computed values of the torsional mode frequencies (denoted
by o) are compared with the theoretically predicted frequen-
cies (shown by the smooth curve). The degeneracy of the
in-plane and out-of-plane modes is evident from the computed
frequencies, which are distinguished by o and + symbols and
overlaid on the corresponding theoretically predicted curves.
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Bending Modes of the Torsionally Stressed Minicircle.
Figure 5 reports the lowest bending frequencies of the natural
minicircle as a function of intrinsic Twistθ3

u. This figure is
a counterpart to FigureI-11(a), obtained for a naturally
straight elastic chain closed into a circle of the same length
(200 bp). Here the range of imposed stress is extended
beyond that presented in paperI. The computed bending
modes are represented by discrete points and the predictions
of theory by smooth curves. The superposition of symbolss
open circles and plus signs for the natural minicircle, open
boxes and cross symbols for the over- or undertwisted circle

made up of straight DNAshighlights the degeneracy of the
configurational fluctuations, and the nearly perfect fit of these
points to the smooth (respectively unbroken and broken)
curves illustrates the remarkable agreement of computation
and theory. The computed frequencies of the natural minicir-
cle are limited to the range ofθ3

u within which and slightly
beyond the limit where the circular form is lower in energy
than the figure-8 configuration. The theoretical frequencies
are reported for values ofθ3

u up to the point at which the
predicted variation in〈∆Wr〉, the average deviation of the
writhe, becomes unphysical.

The primary difference in behavior between the two
cyclized polymers lies in the much greater sensitivity of the
normal-mode frequencies to changes in the intrinsic Twist
in the natural minicircle compared to the cyclized polymer
of naturally straight DNA. The decrease in the lowest
frequency bending mode in the former chain is more than
twice that found for a(0.5° increment ofθ3

u in the latter
molecule. Furthermore, the frequency of deformation of the
natural minicircle drops precipitously if the intrinsic Twist
is changed slightly more, approaching a value of zero ifθ3

u

is changed by(1.8°, the same critical value associated with
the interchange of the naturally circular and figure-8
minimum energy rest states. The very low frequency of these
modes indicates that the energetic cost of deforming the over-
or undertwisted circle into a different shape is negligible.
The bending frequencies of the cyclized naturally straight
DNA approach the same low-energy values whenθ3

u differs
by (2.26° from the equilibrium state.

The nature of this large-scale configurational rearrange-
ment is evident from the computed fluctuations in Figure 6
of individual base-pair origins with respect to (n°, b°, t°)
Serret-Frenet coordinate frames embedded in each base pair
of the energy-minimized, circular reference state. The plots
show the displacements of individual residues in over- and
undertwisted (θ3

u ) 34.25° and 37.75°) natural minicircles
at the moment when the potential energy of the DNA is

Figure 4. Computer-generated representation52 of the mini-
mum energy figure-8 configurations of a natural 200 bp DNA
minicircle obtained by changing the intrinsic Twist θ3

u by
(1.8° from the equilibrium value θ°3 in the torsionally relaxed
state. The color coding depicts the value of Twist θ3, in
degrees, at consecutive base-pair steps along the two equi-
librium structures.

Table 1. Base-Pair Step Parameters at the mth Dimer
Step of an Ideal, Inextensiblea Supercoiled DNA Circle of
200 bp in the Figure-8 Minimum Energy State

description sequential conformational state

θ3
u ) 34.2°
(figure-8 form)

Tilt° ) 1.857 cos((360/11.1)(m + 0.553)) +
2.468 cos(36(m - 0.500))

Roll° ) 1.857 cos((360/11.1)(m + 0.553) + 90) +
2.468 cos(36(m - 0.500) + 90)

Twist° ) 34.108 + 0.671 cos((360/100)(m - 9.979))

θ3
u ) 34.25°
(figure-8 form)

Tilt° ) 1.864 cos((360/11.1)(m + 0.508)) +
2.460 cos(36(m - 0.500))

Roll° ) 1.864 cos((360/11.1)(m + 0.508) + 90) +
2.460 cos(36(m - 0.500) + 90)

Twist° ) 34.308 + 0.663 cos((360/100)(m - 9.571))

θ3
u ) 37.8°
(figure-8 form)

Tilt° ) 2.468 cos(36(m - 0.500)) +
1.857 cos((360/9.1)(m - 1.042))

Roll° ) 2.468 cos(36(m - 0.500) + 90) +
1.857 cos((360/9.1)(m - 1.042) + 90)

Twist° ) 37.891 - 0.670 cos((360/100)(m - 6.460))
a (Shift°, Slide°, Rise°) ) (0 Å, 0 Å, 3.4 Å).

Figure 5. Lowest normal-mode frequencies of bending of a
200 bp natural DNA minicircle subject to an ideal elastic force
field and the corresponding cyclic polymer made up of
naturally straight DNA as a function of the intrinsic Twist θ3

u.
The degenerate frequencies obtained through computations
are distinguished by symbols (o and + for the natural
minicircle; open box and cross × for the closed, naturally
straight DNA). The theoretically predicted values are repre-
sented by smooth curves (unbroken for the natural minicircle
and broken for the circularized straight DNA).
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raised bykBT/50 along the lowest frequency mode. The very
low-energy threshold in the example is a consequence of
the very low frequency of the mode and the restriction of
normal-mode analysis to conformational fluctuations in the
vicinity of the minimum energy state. (Step parameters lie
very far away from the reference state if the mode is assigned
a higher energy.) As evident from the displacement along
the b° axes (normals) of the planar circle (dashed curves),
the global motion is no longer a pure in-plane bending mode
upon supercoiling. The patterns of macromolecular displace-
ment are quite similar, in terms of relative phase, to the
deformations reported in FigureI-9 for over- and un-
dertwisted closed circles made up of naturally straight DNA.
For example, the largest moves along theb° andt° axes of
the overtwisted natural minicircle in Figure 6(a) occur at the
same positions as those of the overtwisted ideal DNA rod
in Figure I-9(a), and the greatest changes alongn° again
appear 25 bp ahead of these points. The deformations of the
natural minicircle, however, are much greater in magnitude
than those of the naturally straight molecule under corre-
sponding superhelical stress. The relative contribution of out-
of-plane (b°-axis) motions also differs in the two molecule,
i.e., greater displacements alongb° andn° than alongt° in
the naturally closed molecule but more pronounced motions
alongn° than along eitherb° or t° in over- and undertwisted
circles composed of naturally straight DNA.

Local Conformational Responses of the Stressed Minicir-
cle. The fluctuations of local step parameters responsible for
the lowest frequency mixed bending modes of the over- or
undertwisted natural minicircle are summarized by a series
of best-fit cosine functions in Table 2. The expressions
describe the sequential variation of∆Tilt, ∆Roll, and∆Twist
of one of the degenerate modes for selected values of intrinsic
Twist at the instant when the energy is raised bykBT/50.
The conformational patterns of the other of the degenerate
modes are related by a phase shift of 90° in the fitted cosine
functions. In all cases, the sequential variation in dimer
bending is described by a sum of cosine functions, one with
wavelength 11.1 bp and the other with wavelength 9.1 bp.

If the minicircle is torsionally relaxed, the amplitudes of the
two terms are roughly equivalent. The function characterized
by wavelength 11.1 bp dominates if the intrinsic Twist is
decreased to 34.25°, and the function characterized by
wavelength 9.1 dominates if the intrinsic Twist is increased
to 37.75°. The amplitude of∆Tilt or ∆Roll is fairly large in
both cases, increasing by more than 0.5° at some base-pair
steps. If Tilt and Roll vary independently of one another,
there is, by definition, a 90° phase shift in the terms used to
describe the sequential variation of∆Tilt and ∆Roll.

The sequential variation of base-pair step parameters in
the minimum energy figure-8 structures of the natural
minicircles with intrinsic Twist varied by(1.8° from the
(θ°3 ) 36°) equilibrium state (Table 1) bears a remarkable
resemblance to the computed fluctuations of local variables
in the lowest frequency mixed bending mode of the over-
and undertwisted circles (Table 2). As noted above, an
additional cosine term of wavelength 11.1 or 9.1 bp appears
in the functions fitted to the sequential variation of Tilt and
Roll along the optimized figure-8 structures and a term of
the same period dominates the bending modes of the natural
minicircle with θ3

u ) 34.25° or 37.75°. Given that no other
normal modes of the circle show a comparable decrease in
frequency and energy with imposed supercoiling, it is highly
likely that these modes guide the transition pathway between
the circular and figure-8 forms (see below).

Normal Modes of the Figure-8. Normal-mode analysis of
the stable figure-8 minimum of the same (θ3

u ) 34.25°)
overtwisted DNA molecule yields a complementary picture
of configurational deformation. The lowest (nearly zero)
frequency motion of the figure-8 is a slithering motion of
the duplex which has no effect on overall macromolecular
shape, i.e., the point of chain self-contact simply translocates
freely along the molecular contour. The fluctuations of local
step parameters responsible for the slithering mode are
described by the best-fit cosine functions in Table 3. The
expressions, which contain only the dominant contribution

Figure 6. Displacement of the origins of base-pair axes at
the moment when the potential energy is raised by kBT/50 in
the lowest frequency bending modes of (a) an overtwisted
(θ3

u ) 34.25°) or (b) an undertwisted (θ3
u ) 37.75°) 200 bp

natural DNA minicircle. Displacements (thin solid, dashed, and
thick solid lines) measured respectively along the n°, b°, t°
axes of Serret-Frenet frames embedded in each base pair of
the minimum energy configuration.

Table 2. Fluctuations of Base-Pair Step Parameters at
the mth Dimer Step of an Ideal, Inextensible,a Naturally
Circular, Supercoiled DNA Circle of 200 bp in the Lowest
Frequency In-Plane Bending Mode

description sequential conformational distortions

θ3
u ) 34.25°
(overtwisted)

∆Tilt ) -0.522 cos((360/11.1)(m + 1.401)) -
0.0215 cos((360/9.1)(m - 2.055))

∆Roll ) -0.522 (cos((360/11.1)(m + 1.401) + 90) -
0.0215 cos((360/9.1)(m - 2.055) + 90)

∆Twist ) -0.179 cos((360/100)(m - 17.610))
θ3

u ) 36°
(torsionally

relaxed)
∆Tilt ) -0.0472 cos((360/11.1)(m + 0.193)) -

0.0473 cos((360/9.1)(m + 1.652))
∆Roll ) -0.0472 cos((360/11.1)(m + 0.193) + 90) -

0.0473 cos((360/9.1)(m + 1.652) + 90)
∆Twist ) 0.000

θ3
u ) 37.75°
(undertwisted)

∆Tilt ) -0.0215 cos((360/11.1)(m + 0.268)) -
0.522 cos((360/9.1)(m - 1.128))

∆Roll ) -0.0215 cos((360/11.1)(m + 0.268) + 90) -
0.522 cos((360/9.1)(m - 1.128) + 90)

∆Twist ) +0.179 cos((360/100)(m - 7.412))
a (Shift°, Slide°, Rise°) ) (0 Å, 0 Å, 3.4 Å).
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for each base-pair step parameter at the moment when the
energy is raised bykBT/(2 × 104), closely resemble the
sequential variation of base-pair step parameters along the
figure-8 minimum energy state (Table 1). Specifically, the
expressions for the fluctuations in Roll and Tilt are obtained
by shifting the phase by 90° and reducing the amplitude of
the cosine functions with wavelength 11.1 bp. Such variation
of parameters is reminiscent of the local conformational
changes found in the lowest frequency, “free” torsional mode
of a naturally straight DNA closed into a circle, where a
corresponding change in phase results in the movement of
base-pair steps from the inside to the outer surface of the
molecule, and vice versa.32 In the case of the lowest
frequency slithering mode of the figure-8, the local confor-
mational changes move the sites of maximum and minimum
bending, located respectively at the two tips and the central
crossing points of the figure-8, back and forth along the chain
contour. The second lowest frequency motion of the figure-8
is a mixed bending mode which assists in opening the
collapsed, self-contacted structure to the circular form (see
below). As evident from Table 3, where the fluctuations of
local step parameters needed to raise the energy bykBT/2
are reported as fitted trigonometric functions, the residue-
invariant increase (or decrease a half cycle later) of∆Twist
dominates this mode.

Thermal Fluctuations. The global motions associated with
a collection of thermally fluctuating 200 bp minicircles are
illustrated in Figure 7. Equation 5 was used to compute
〈∆Wr〉, the average deviation of the writhe from that in
the equilibrium configuration, and eq 6 to compute the
square root of the variance of the writhe (〈Wr2〉 - 〈Wr〉2)1/2,
both as a function of torsional stress measured by
∆Tw° ) (θ°3 - θ3

u) × 200/360°. The open circles and the
×’s give the results of the computations for naturally curved
and intrinsically straight DNA, respectively. In both of these
cases, the equilibrium configuration is circular, and the results
closely match the predictions of the analytical theory given
by the solid and broken curves. In the case of the filled-in
circles, the equilibrium configuration is figure-8 like, a case
to which the analytical theory has not been applied. The

excellent agreement between the present calculations and the
analytical theory is evident in the graphs, as is the difference
in properties of the rings formed from curved DNA as
opposed to straight. The data show the increased flexibility
of the natural minicircles as compared with circles formed
from intrinsically straight chains for all values of∆Tw°. The
greater sensitivity of the writhe-altering fluctuations of the
natural minicircles to increasing torsional stress is also
evident.

Pathways of Large-Scale Configurational Rearrange-
ment. Excursions of the Circle. Figure 8 reports the variation
in both energy and writhe of an overtwisted (θ3

u ) 34.25°),
naturally curved DNA minicircle perturbed along its lowest
frequency normal modes to transient configurational states
intermediate between the (circular and figure-8) minimum

Table 3. Fluctuations of Base-Pair Step Parameters at
the mth Dimer Step of an Ideal, Inextensible,a Naturally
Circular, Supercoiled DNA of 200 bp about the Minimum
Energy Figure-8 Configuration in the Two Lowest
Frequency Bending Modes

description sequential conformational distortions

θ3
u ) 34.25°
(mode 1, slitheringb)

∆Tilt ) 0.185 cos((360/11.1)(m + 0.508) - 90)
∆Roll ) 0.185 cos((360/11.1)(m + 0.508))
∆Twist ) -0.066 cos((360/100)(m - 9.571) - 90)

θ3
u ) 34.25°
(mode 2, bending)

∆Tilt ) 0.076 cos(36(m - 0.500)) -
0.098 cos((360/9.1)(m - 1.325))

∆Roll ) 0.076 cos(36(m - 0.500) + 90) -
0.098 cos((360/9.1)(m - 1.325) + 90)

∆Twist ) -0.638 + 0.034 cos((360/100)(m -9.671))

a (Shift°, Slide°, Rise°) ) (0 Å, 0 Å, 3.4 Å). b Parametric values
when the energy is raised by kBT/(2 × 104).

Figure 7. Variation of the average deviation of the writhe
〈∆Wr〉 from that in the circular equilibrium configuration and

the square root of the variance of the writhe, x〈Wr2〉-〈Wr〉2

vs the total imposed twist, ∆Tw°, of a closed 200 bp naturally
circular DNA (open circles), a circular chain of the same length
constructed of naturally straight DNA (× symbols), and the
figure-8 configuration adopted by the naturally circular mol-
ecule (filled-in circles). The theoretically predicted behavior
of the two circular configurations is represented respectively
by broken and unbroken curves over the range in which the
theory is valid.

Figure 8. The variation of energy versus writhe of an
overtwisted (θ3

u ) 34.25°), naturally circular, 200 bp DNA
molecule perturbed along its lowest frequency modes to
transient configurational states intermediate between the
minimum energy circular and figure-8 forms. The large dots
correspond to states illustrated in Figure 10. (See text for
details of transition pathways.)
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energy configurations found to be stable under these condi-
tions. Path I corresponds to deformations of the circle along
the lowest frequency (mixed bending) mode detailed in
Table 2 and Path II to the corresponding normal-mode
bending distortions of the figure-8 (see below). A writhe of
zero corresponds to the circle and a value of unity to an
ideal, planar figure-8 configuration. The energy cost of large-
scale configurational rearrangements (monitored by the
writhe) between the circle and figure-8 is quite small.

The intermediate configurational states in Figure 8 are
obtained by recursive introduction of small normal-mode
distortions of base-pair step parameters followed by rapid
energy minimization. Each configuration of DNA is de-
scribed by 1200 parameters (6 rigid-body parameters per
base-pair step× 200 base-pair steps). The initial (minimum
energy) configuration is defined by a 1200 dimensional
vector p0, with elements corresponding to the sequential
variation of step parameters around the circle, and is
deformed top0 + R∆p0, where R is a constant and the
displacement vector∆p0 is the normalized lowest frequency
normal-mode vector of the circle. A short run of (conjugate
gradient) energy minimization is then carried out to avoid
high energy states. The minimization is stopped when the
decrease of energy per iteration is small (<5 × 10-5 kBT).
More thorough energy minimization would return the con-
figuration to the initial statep0. The constantR is chosen to
be small enough so that the number of iterations per
minimization cycle is at most 5. The new configurationp1

is then deformed top1 + R∆p1, where the normalized
displacement vector∆p1 is defined by the configurational
change from the initial structure, (p1 - p0)/|p1 - p0|. Energy
minimization is performed as in the preceding step, and the
new configurationp2 is obtained. This process is repeated,
so that in thekth repetition, configurationpk is deformed to
pk + R∆pk, where∆pk is defined by the direction of the last
configurational move, (pk - pk-1)/|pk - pk-1|. Energy
minimization follows, and the new configurationpk+1 is
obtained. In this way, the series of configurationsp1 ... pK

along Path I is generated, the energy of which is plotted
versus the writhe in Figure 8. As should be clear from the
above description, the displacement vector∆pk changes as
the configuration of the molecule changes. The correlation
of the displacement vectors along Path I with the initial
displacement vector∆p0 is reported in Figure 9, Curvea.
The correlation is greatest at the start of the transformation
and decreases approximately linearly with the increase in
writhe, i.e., departure from the equilibrium reference state.

Miyashita et al.44 have recently reported an analogous
global transformation of a protein using an elastic network
model of amino acid interactions. They use a scheme much
like ours to generate intermediate conformational states along
the transition pathway between open and closed forms of
the molecule. The displacement vector∆pk (k > 0) used to
generate successive intermediate states, however, is a
combination of the low-frequency normal modes of the
current conformationpk. In contrast to the elastic treatment
of DNA, where intermediate conformational states are not
minimum energy structures, all molecular states can be
regarded as minima in the elastic network model. Thus, we

cannot perform normal mode calculations at each stage of
conformational transformation and, instead, move from state
to state using the aforementioned iterative minimization
procedure. The fact that the transition pathway can be
described by a small number of normal modes suggests the
possibility of identifying a smooth, realistic conformational
pathway with a low-energy barrier using more sophisticated
approaches, such as path integral techniques.45

Excursions of the Figure-8. The second lowest frequency
mixed bending mode of the figure-8 is responsible for the
large-scale configurational rearrangement needed to open the
collapsed, self-contacted structure to the circular form. The
series of configurationsq1 ... qL along Path II in Figure 8 is
generated, starting from the energy-minimized figure-8
configurationq0 (writhe ) 0.94) and the normalized initial
displacement vector∆q0 associated with the second lowest
frequency bending mode. As with the deformed states of
the circle, the correlation of the displacement vector∆ql

with the initial displacement vector∆q0 decreases as the
configuration of the molecule changes from its original state,
Curveb in Figure 9.

Interestingly, the displacement vector∆pk on Path I
describing perturbations of the circle is correlated with the
initial displacement vector∆q0 of the figure-8. The correla-
tion ∆pk ‚ (-∆q0) is plotted as Curvec in Figure 9. Initially
at the minimum energy (circular) configuration (where
k ) 0), the correlation is close to zero, indicating that the
two vectors (∆p0 and∆q0) are almost perpendicular to each
other. The correlation increases as the writhe increases. The
increase of the correlation complements the decrease of the
correlation∆pk ‚ ∆p0 (Curve a). Indeed, the contribution
from the two directions ((∆pk ‚ ∆p0)2 + (∆pk ‚ ∆q0)2)1/2,
which is plotted as Curvee in Figure 9, is close to unity,
indicating that these two normal-mode vectors play dominant
roles in the circle to figure-8 transition (Path I). The series
of displacement vectors∆ql along Path II is similarly
correlated with∆p0. The correlation∆ql ‚ (-∆p0) is plotted

Figure 9. Correlations, plotted against the writhe, of the dis-
placement vectors ∆pk and ∆q l of intermediate configurational
states with the normal (bending) mode vectors p0 and q0 of
the minimum energy circular and figure-8 forms of the over-
twisted DNA molecule described in Figure 8: (a) ∆pk ‚ ∆p0;
(b) ∆q l ‚ ∆q0; (c) -∆pk ‚ ∆q0; (d) -∆q l ‚ ∆p0, and the corres-
ponding contributions from the two normal-mode vectors (∆p0

and ∆q0) to the displacement vectors (∆pk and ∆q l);
(e)((∆pk ‚∆p0)2+ (∆pk ‚∆q0)2)1/2; (f)((∆ql‚∆p0)2 + (∆ql ‚ ∆q0)2)1/2.
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as Curved in Figure 9. In this case also, the contribution
from the two directions ((∆ql ‚ ∆p0)2 + (∆ql ‚ ∆q0)2)1/2,
Curvef in Figure 9, is close to unity, indicating that the two
normal-mode vectors play dominant roles in the reverse
(figure-8 to circle) transformation (Path II).

Intermediate States. Although the writhe is very effectively
changed if the DNA is deformed along Paths I and II in
Figure 8, the minimum energy configurations of the figure-8
and circular forms (q0 andp0, respectively) cannot be reached
or approached from the opposing minimum. The direction
of the displacement vectors∆pn and∆qm must be changed
discontinuously at some point to approach the opposite
minimum energy states. Paths I′ and II′ in Figure 8 are
obtained by such changes. Configurationspk′ andql′ are the
closest points on Paths I and II, respectively, to their point
of intersection, differing from one another by a root-mean-
square distance of 5.6 Å. Path II′ is obtained by usingpk′ as
the starting configuration and the-∆ql′ as the initial
displacement vector. Path I′ is similarly obtained fromql′

and -∆pk′. The differences between Paths I and I′ near
Wr ) 0 and those between Paths II and II′ nearWr ) 1
stem primarily from insufficient energy minimization in the
generation of intermediate configurations. The minimum
energy configurationsp0 and q0, where normal-mode cal-
culations are carried out, can be reached only by thorough
energy optimization, e.g., Newton-Raphson minimization.

The continuous transformation of the circle to the figure-8
along Paths I and II′ is illustrated in Figure 10 and in the
Supporting Information. Starting from the circular configu-
ration, the deformation proceeds primarily via the change
of Tilt and Roll (see the expressions in Table 2 for the
variation of step parameters in the lowest frequency bending
mode of the circle and the dominant role of the mode shown
by Curve a in Figure 9). A residue-invariant decrease of
Twist, which releases the excess Twist in the molecule,
gradually comes into play (see Curvec in Figure 9 and the
expressions in Table 3 for the variation of step parameters
in the lowest frequency bending mode of the figure-8). The
residue-invariant decrease of Twist becomes dominant when
the configuration nears the intersection point in Figure 8,
i.e., intermediate state, and further configurational rearrange-
ment to the figure-8 proceeds almost exclusively through
the release of excess Twist (noted by the color coding).
Although the distribution of Twist along the contour of the
intermediates is nonuniform, the incremental changes in
overall twist,Tw, between successive configurational states
is uniform, reflecting the regular increments of the writhe
and the well-known invariance of the linking number
(Lk ) Wr + Tw).46 The configurations adopted in the reverse
transition from the figure-8 to the circle along Paths II and
I′ are very similar to those shown in Figure 10. The energy
barrier is slightly lower,∼0.3 kBT or ∼0.2 kcal/mol at
300 K, if the molecule follows Paths I and II′ from the circle
to the figure-8, rather than the reverse Paths (II and I′) from
the figure-8 to the circle, where the barrier is∼0.5 kBT or
∼0.3 kcal/mol at 300 K. It should be noted that explicit
treatment of chain self-contact could change the normal-mode

frequencies as well as the minimum energy of the figure-8
from the values computed here in the absence of such a
correction.

Discussion
The minicircles studied in this work are comparable in length
and degree of supercoiling to the DNA loops which are
formed by various regulatory proteins and enzymes that bind
in tandem to sequentially distant parts of the long chain
molecule.47,48The influence of natural curvature on the global
motions of the minicircles found here can thus provide insight
into how DNA loops of several hundred base pairs might
respond to changes in nucleotide sequence. The sequence
of base pairs in such loops determines the degree of intrinsic
curvature of the spatially constrained molecule.2-4

Here we find that covalently closed DNA duplexes with
natural curvature are torsionally stiffer but, when placed

Figure 10. Computer-generated snapshots52 of the configu-
rational pathway between circular and figure-8 configurations
obtained by deforming an overtwisted (θ3

u ) 34.25°), natu-
rally circular DNA minicircle along paths I and II′ in Figure 8.
The color-coding of Twist is identical to that in Figure 4.
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under superhelical stress, are capable of greater bending
deformations than minicircles which are made up of naturally
straight DNA. The degree of curvature changes the character
of global bending, i.e., the relative frequencies of in-plane
vs out-of-plane deformations. Whereas a covalently closed,
naturally straight duplex distorts more easily via in-plane
than out-of-plane bending deformations, a natural minicircle
is just as likely to bend via either route and a chain, which
is curved more tightly than the natural minicircle, preferen-
tially deforms out of the plane of the circle (Figure 3).

Whereas the naturally straight DNA rotates freely about
its global helical axis, there is a barrier impeding large-scale
helical twisting of curved DNA. In the absence of intrinsic
curvature, no single orientation of the closed duplex is
preferred over any other, and all sites are expected to be
equally accessible to a ligand, such as DNase I, which
preferentially contacts the (outer) convex surface of its DNA
target.49,50By contrast, the introduction of natural curvature
is predicted to restrict rotation of the DNA as a whole about
its helical axis, thereby favoring the minimum energy
configuration and limiting enzymatic access to residues
located on the inside of the ring. The enzymatic cleavage
pattern of a naturally closed DNA minicircle is thus expected
to include regularly spaced sites of enhanced cutting alternat-
ing every half helical turn with sites of suppressed cutting.
Other types of naturally closed molecules, such as curved
DNA molecules generated from alternating fragments of
naturally straight and naturally rolled base-pair steps,14,15are
expected to exhibit the same global properties.

The barrier opposing global bending of the natural
minicircle lowers significantly when the molecule is over-
or undertwisted. The frequency, i.e., energy, of global
bending decreases in value upon supercoiling (Figure 5), and
if the imposed stress is sufficiently large, global configura-
tional rearrangement of the circle to the figure-8 form takes
place. Because the bending frequencies of the natural
minicircle are much more sensitive to changes in intrinsic
Twist than are those of the cyclized naturally straight
polymer, the large-scale configurational interchange occurs
more easily in the molecule with intrinsic curvature. The
dominant (n ) 2) modes of the two kinds of molecules,
however, are of similar mixed bending character, i.e., the
base pairs move out of the plane of the circle as the
supercoiled molecule concomitantly deforms to elliptical
shapes. The mechanism of conformational transformation
between circle and figure-8 is thus expected to be similar in
the two types of DNA.

Intermediate states constructed from the computed struc-
tures and dominant bending modes of the two minimum
energy forms (Figures 8 and 10) suggest that the circle to
figure-8 transformation involves two distinct types of con-
formational rearrangement. Localized changes in bending
(Tilt and Roll) initially dominate as the circle deforms to an
elongated, nonplanar intermediate state, and subsequent
transformation to the figure-8 minimum proceeds via the
uptake of twisting (Tables 2 and 3 and Figure 10). The twist
density is nonuniform in both the intermediate states and
the stable figure-8 minimum, with the imposed stress taken

up preferentially at the sites of closest interstrand contact in
the straighter central parts of the structures (Figure 4).

The range of low-energy states identified on the basis of
the dominant normal modes of the circle and figure-8 is
consistent with the mixture of spatial forms found in previous
Monte Carlo simulations of a much longer (486 bp) DNA
circle under superhelical stress.51 The (∼0.4 kBT) potential
barrier between the two states at the midpoint of the transition
of the 200 bp natural minicircle is remarkably similar to the
free energy (0.2kBT) reported previously for the longer,
naturally straight DNA, with slightly different elastic con-
stants and under the influence of a screened Coulombic
potential. The present study tracks the lowest energy pathway
of interconversion between circular and figure-8 configura-
tions via the dominant thermal fluctuations of the two
minimum energy states, whereas the Monte Carlo findings
are based on the characteristics of a broad, random sample
of configurational states. The treatment of normal modes
provides mechanistic insights into configurational rearrange-
ments which cannot be gleaned from Monte Carlo and other
stochastic approaches.

Statistical mechanical considerations make it possible to
characterize the large-scale motions in terms of the full set
of normal-mode frequencies of covalently closed DNA
molecules and can be applied to either computed or theoreti-
cally predicted modes (Figure 7). The thermal fluctuations
in global structure are described in terms of the average
deviation and variance of the writhe. The intrinsic, out-of-
plane response of curved DNA to imposed torsional stress
underlies its greater global deformability compared to a
naturally straight molecule. The writhe, a measure of the
chiral distortions from planarity of a closed curve, is sensitive
to the intrinsic conformational response of curved DNA to
imposed twist. The uniform twisting of base pairs along a
curved, unligated molecule results in a helical configuration,
the handedness and proportions of which depend respectively
on the sign and magnitude of imposed twist. The same type
of local deformations of an open piece of straight DNA
merely reorients the bases at either end of the molecule
without change of global shape. The covalent closure of the
ends of the naturally curved duplex suppresses the torsionally
induced configurational response of the linear molecule and
converts the preferred helical configuration to the out-of-
plane bending modes which dominate the global fluctuations
of the closed polymer. The localized twisting of adjacent
residues at a single site along a curved DNA similarly
produces a chiral arc. The binding of an untwisting agent to
a natural minicircle is therefore expected to enhance the
global motions of a DNA minicircle by a similar mechanism,
converting the end-to-end separation of the bound linear form
into an out-of-plane bending mode in the closed molecule.

Finally, the remarkable agreement between the computed
and theoretically predicted dependence of the normal modes
of naturally curved DNA on the degree of curvature and
torsional stress and the identical descriptions of the global
motions of circular molecules add to the reliability of the
normal-mode analysis of DNA at the base-pair level and
increase confidence in the computed dynamic properties of
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configurations such as the figure-8 which are beyond the
scope of current theory.
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Abstract: We have formulated the Energy by Linear Superposition of Corrections Approximation

(ELSCA) for estimating the electrostatic and apolar solvation energy of bringing two proteins

into close proximity or into contact as defined by the linearized Poisson-Boltzmann model and

a linear function of the solvent-accessible surface area. ELSCA utilizes potentials of mean force

between atom types found in the AMBER ff99 force field, a uniform distance-dependent dielectric,

and a potential that mimics the change in solvent accessible surface area for bringing two

solvated spheres into contact. ELSCA was trained by a linear least-squares fit on more than

39 000 putative complexes, each formed from pairs of nonhomologous proteins with a range of

shapes, sizes, and charges. The training set was also designed to capture various stages of

complex formation. ELSCA was tested against over 8000 non-native complexes of 45 enzyme/

inhibitor, antibody/antigen, and other systems that are known to form complexes and gives an

overall correlation of 0.962 with PBSA-derived energies for these complexes. The predictions

have a slope of 0.89 on the actual values with a bias of 11.1 kcal/mol. When applied to native

complexes of these 45 protein systems, ELSCA reproduces PBSA results with a correlation of

0.787, a slope of 1.13, and a bias of 13.0 kcal/mol. We report parameters for ELSCA in the

context of the AMBER ff99 parameter set. Our model is most useful in macromolecular docking

and protein association simulations, where large portions of each molecule may be considered

rigid.

Introduction
The protein docking problem, most generally the challenge
of finding the structure of a complex of two proteins given
the three-dimensional structures of the isolated components,
is difficult due to the degree of sampling required and the
limitations of scoring functions. In particular, while gas-phase
molecular mechanics energies are readily computed by
docking programs, the change in solvation energy involved
in forming a particular complex is not rigorously treated by

most scoring functions presently in use. Although implicit-
solvent methods such as Poisson-Boltzmann/Surface Area
(PBSA) and Generalized Born/Surface Area (GBSA) are
widely used for calculating solvation energies during com-
plex formation,3,24,37they are applicable for screening at most
a few thousand putative complexes after lower-resolution
searches. If the solvation energy involved in forming a
complex between two proteins were formulated as a sum of
pairwise additive interactions between atoms of the ligand
and receptor, this quantity could be readily computed along
with the gas-phase molecular mechanics energies that most
real-space docking programs already employ, abrogating the
need for refinement of the solutions produced and extending
implicit-solvent methodology for protein docking and ef-
ficient simulations of macromolecular encounters.
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In implicit solvent methodology, the solvation free energy
is typically approximated as the sum of electrostatic and
nonpolar contributions.38 Numerous studies have demon-
strated the importance of electrostatics in biomolecular
recognition.2,6,7,21,43,49In solvated systems, electrostatic forces
may act over long ranges to steer protein partners and
accelerate the rate of complex formation,20,22 affect the
structure of highly charged nucleic acids,1 and order the ions
around those structures.11 Favorable electrostatic interactions
exist between polar or charged regions of biomolecules and
polar water molecules. During the final stages of the
association of biomolecules, stripping away nearby water
molecules makes an unfavorable contribution to the binding
free energy and may even outweigh salt bridges and
favorable dipole interactions formed by the association.40 To
whatever degree hydrophobic and apolar forces drive the
final stages of complex formation, electrostatic effects may
still help to specify interactions. In contrast, nonpolar
interactions comprise the work of cavity formation and the
dispersion forces acting between solute and solvent.38 Break-
ing solute-solvent dispersion interactions during complex
formation is energetically unfavorable, but this is compen-
sated by burial of solvent-accessible surface area which
reduces the work required to form a solvent cavity for the
proteins.

Accurate estimates of the electrostatic interaction energy
of two solvated biomolecules at long range can be calculated
accurately and cheaply so as to predict parameters such as
relative association kinetics through Brownian dynamics
studies.20,23 However, at close range, accurate electrostatic
energies are much more expensive to calculate due to
desolvation effects and the disparity between the polarity of
water and the apolar residues in the cores of proteins. This
is a major obstacle to accurate prediction of absolute
association rates of biomolecules and the structures of their
complexes. The Poisson-Boltzmann approximation, a merger
of Poisson’s equation for macroscopic electrostatics and a
mean-field treatment of the spectator ions, has been used
extensively for analyzing the electrostatics of macromol-
ecules, particularly the association of proteins,18,20,40but this
computation typically requires several minutes on a modern
workstation. Approximations to Poisson-derived hydration
energies such as Generalized Born parametrizations17,28 are
faster, but are still expensive for lengthy macromolecular
simulations and far too expensive for general searches in
protein docking applications.

The nonpolar solvation energy of proteins is commonly
formulated as a linear function of the solvent-accessible
surface area, based on observations of the solvation energy
of linear alkanes.42 While this rule does not generalize
perfectly to small molecules of other shapes,52 nor to
proteins,29 most Poisson-Boltzmann electrostatic models are
benchmarked alongside such models (see ref 41), for
example) and so require this term for computation of total
solvation energy. While calculating the solvent-accessible
surface area of a molecule withN atoms can be written as
an O(NlogN) problem,39 the number of computations per
atom is still large, and the amount of coding needed to
rigorously implement this calculation in a docking or

simulation program is considerable. Square-well potentials33

and other rough measures of shape complementarity12 are
therefore used.

For computational convenience, scoring functions pres-
ently used in protein docking applications neglect the most
physically meaningful aspects of solvation: the fact that
buried atoms in the ligand oppose electrostatic fields much
less effectively than polar water molecules, the solute-
solvent dispersion interactions, and the change in the work
of cavity formation upon binding. At long ranges, these
effects are negligible, but protein docking requires millions
to billions of accurate estimates for closely interacting
proteins, and simulations of macromolecular encounters
require accurate energy estimates for all degrees of separa-
tion.

In the present work we introduce the Energy by Linear
Superposition of Corrections Approximation (ELSCA), a
correction scheme based on a distance-dependent dielectric
(DDD) that is uniform (e.g. its form is the same regardless
of the local environment), a scalable function describing
buried surface area between two interacting spheres, and a
set of potentials of mean force (PMFs) between distinct types
of atoms. We compute solvation energies using PBSA
parameters for modeling proteins with the AMBERff99
parameter set14,49 for more than 39 000 putative complexes
and close associations of 21 distinct proteins with differing
charges, shapes, and sizes. For convenience of implementa-
tion, ELSCA is fit to reproduce the change in solvation
energy plus the gas-phase Coulombic association energy of
two proteins. To demonstrate ELSCA’s transferability, we
apply it to an independent set of 45 native and over 8000
non-native protein complexes. All functions used in this
model can be conveniently superimposed on grid-based
potentials or lookup tables, implying no additional compu-
tational cost during docking studies and simulations. The
purpose of ELSCA is most like that of a set of potentials of
mean force developed by Jiang and co-workers26 for the total
free energy change of bringing two proteins together in a
particular conformation. However, ELSCA should also be
considered in the context of other pairwise potentials for
calculating the solvation energy of individual species such
as EEF127 and atomic contact energies.54

Methods
Approximation of the Total Electrostatic and Nonpolar
Solvation Energy.To break Poisson-Boltzmann electrostat-
ics and change in solvent-accessible surface area into the
pairwise interactions of ELSCA, we make use of four
approximations. The first and most basic approximation, a
screened Coulombic interaction, stems directly from Debye-
Hückel theory34 and is the dominant contribution for interac-
tions at distances greater than 60 Å. The second approxi-
mation, a screened Coulombic interaction attenuated by a
uniform distance-dependent dielectric (DDD), affects inter-
mediate and short-range interactions. The third, a set of pair
potentials (PMFs) between sixteen atom types, is effective
at distances less than 15 Å. The fourth, a function that
roughly reproduces the change in solvent accessible surface
area as two spheres of given radii approach one another, is
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effective at distances on the order of the diameter of the
solvent probe. The first approximation has no adjustable
parameters, but the second and third have a total of 413 (see
below) and the fourth is scaled by a single parameter. All
parameters are fit simultaneously by solving a linear least-
squares problem. The total electrostatic and solvation energy
is the sum of energies from all four approximations.

At large distances, the electrostatic interaction of two
charges in a neutral solvent is given by Coulomb’s law scaled
by the appropriate solvent dielectric constant. In dilute ionic
solutions, however, the long-range electrostatic potential is
screened exponentially as described by Debye-Hückel
theory. We account for this explicitly using [1], wherei and
j run over the atoms in the ligand and receptor,k runs over
the two ionic species in the continuum solvent,q represents
an atomic partial charge,â is the inverse product of
Boltzmann’s constant and the absolute temperature, andN
is the number density of an ionic species in bulk solvent.

Distance-dependent dielectrics are often computationally
convenient, whether realistic or not. In the docking problem,
a uniform DDD is particularly convenient as the energy
remains a sum of pairwise interactions. We formulate the
second part of our method using a set of Gaussians to
attenuate the screened Coulombic potential as shown in [2].

The value of 0.02 in the exponential argument was chosen
along with five Gaussian terms to provide a basis for finely
tuning the dielectric constant at distances between 0 and 60
Å, where the interacting ligand and receptor are no longer
adequately described as collections of Debye-Hückel spheres.

The electrostatic energy of closely associated proteins is
not adequately described by pairwise charge-charge interac-
tions between the solutes due to desolvation effects and the
fact that protein interiors dampen electrostatic fields much
less effectively than bulk water. To account for these effects
while still using pairwise interactions, we parametrize a set
of M(M+1)/2 PMFs forM atom types. Each PMF is in turn
a linear combination ofkPMF basis functionsg(r) [3], giving
kPMFM(M+1)/2 scaling parameters that must be solved for.
The correction to the electrostatic energyEcorr is given by
[3 and 4]:

Above,n andp are involved in summations over all atom
types,Ti andTj represent the types of theith andjth atoms,
respectively,Snp

(R) represents theRth scaling parameter of

the PMF between atoms of typesn andp to be solved for,
andδ is the Kronecker delta. The total electrostatic estimate
is thus a linear function of the scaling parametersSnp

(R) and
SDDD

(R). With a number of putative complexes generating at
least (kPMFM(M+1)/2) + 6 sets of distinct coefficients, the
scaling parameters may be obtained by solving a least squares
problem As ) b. Each row of the matrixA is a set of
coefficients for eachSDDD

(R) and Snp
(R) obtained from one

putative complex.s represents the vector of scaling param-
eters for the DDD and PMFs, andb represents the vector of
total electrostatic and nonpolar solvation energies. Operation-
ally, each row of matrixA is filled by first initializing it to
zero and then looping over atomsj of one molecule nested
within a loop over atomsi of the other. In the inner loop,
the value of each relevant basis function given the distance
rij is added to the appropriate column of the row of matrix
A.

The PMF basis functionsg(r) must be well-behaved in
thatg(r) has finite values atr ) r0 and atr ) rcut, wherercut

is the cutoff distance for applying the PMF (set equal to the
cutoff for vdW interactions in our model) andr0 < rcut.
Because the electrostatic interactions between receptor and
ligand at long ranges are approximated well by treating the
ligand as a set of point charges moving within the electro-
static field of the receptor, it is preferable to have PMFs,
and therefore to select basis functions, that diminish asr
approachesrcut. Piecewise Gaussians of the form 5 were
chosen.

In [5], σnp is the Lennard-Jones parameter for atom types
n andp except in cases wheren or p is HO (see Table 1), in
which caseσnp is zero.

For constructing the PMFs, three criteria were considered
in determining the number of basis functionskPMF in [4] and

Ebasic) ∑
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4πε0εwaterrij

exp[- x∑
k
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2Nk
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EDDD ) Ebasic[1 + ∑
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∑
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δTin
δTjp

fnp(rij) (4)

Table 1. Atom Types for ELSCA Parametersa

ELSCA name AMBER ff99 names

CT CT
C C
CR CA, CC, CV, CW, CR, CB, C*, CN
N N, NA, NB, N2, N3
O O
O2 O2
OH OH
S S, SH
H H, HS
HA HA
HP HP
HC HC
HO HO
H1 H1
H4 H4
H5 H5

a The atom types defined for ELSCA comprise all those found in
amino acids in AMBER ff99. Distinct Lennard-Jones parameters as
well as considerations to broad classes of chemical groups led to
these choices.

gR(r) ) {exp(-
âPMF

(R + λPMF)
2
(r - σnp)

2), r g σnp

1, r < σnp

(5)
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spread of basis functions as dictated by theâPMF andλPMF

in [5]: the RMSD of estimated energies compared to those
derived by PBSA, the similarity in correlations obtained in
the training set versus those in the test set, and the range of
values taken by the PMFs asr approachedσnp. The third
criterion was included to ensure that no particular pairwise
interaction could drastically affect the estimated score, based
on our observation that ELSCA could become particularly
sensitive to atoms in close contact if given large values of
âPMF in conjunction with a smallλPMF.

Distinct atom types for defining the PMFs were first
identified by distinct Lennard-Jones parameters within
AMBER ff99 (seeMethods, Protein Docking). Distinctions
were also made betweensp2 hybridized carbon atoms in
aromatic groups,sp2hybridized carbon atoms in carbonyl
groups, oxygen atoms in amides or carbonyl groups, and
oxygen atoms in carboxylic acids. These distinctions help
to distinguish between grossly different electronic environ-
ments but do not permit ELSCA to parametrize extremely
rare atom types, such as carbons in imidazole rings, which
would lead to overfitting. The AMBERff99 atom types, and
the corresponding names we give them, are found in Table
1. In total, these 16 atom types provided 136 PMFs for fitting.

Finally, at very short distances, the change in solvent-
accessible surface area was approximated by a piecewise
function that closely reproduces the change in solvent-
accessible surface area when two spheres of radiiRi andRj

(Ri > Rj) come into contact with each other considering
solvent probe radiusRs. This function is 4π(Rj + Rs)2 for r
< (Ri - Rj), a cubic spline connecting the points (Ri - Rj,
4π(Rj + Rs)2) and (Ri + Rj + 2Rs, 0) with zero derivative at
its extrema, and zero elsewhere. This function is scaled by
a constant fit in tandem with the PMFs and DDD. This is a
first-order correction to the SA term, in analogy to the DDD
as a first-order correction to the PB term. We setRs equal to
the solvent probe radius used in PBSA calculations (see
below). However, for convenience, the atomic radii for this
calculation were taken from the Lennard-Jones parameters
in ff99. While these radii do not perfectly correspond to the
AMBER ff99 PBSA radii, they are adequate for estimating
the change in surface area in our model.

Protein Modeling. For training ELSCA, a set of high-
resolution, nonhomologous proteins was chosen from the
Protein Data Bank5 using the PISCES server48 to have
R-factor less than 0.18 and less than 5% sequence similarity.
From the resulting list of 441 proteins, 21 were chosen to
represent a range of sizes and charges, with the additional
criteria that there be no cofactors present in the selected
proteins and that their structures be fully resolved. PDB ID
numbers and summary data for the systems are given in
Table 2. Hydrogens found in AMBERff99 were added using
Leap in the AMBER855 package, but to give some consid-
eration to the protonation state of histidines, the pdb2gmx
utility from the GROMACS software package4,15,30,45,50was
used to dictate protonation on Nε (the default state for
pdb2gmx), Nδ, or both. Because the initial structure fed to
our docking program is taken as a reference state, each
structure was energy-minimized in vacuo using the Sander
program in AMBER8 through 50 cycles of steepest descent

and up to 950 cycles of conjugate gradient minimization or
until the potential energy converged to 1.0× 10-4 kcal/mol.
Backbone heavy atoms were restrained to their initial
coordinates by 1.0 kcal/mol-Å2 harmonic potentials during
the minimization.

Protein Docking. To parametrize ELSCA as described
in Approximation to the Total Electrostatic Energy, we
required a diverse set of pairs of proteins in various
hypothetical complexes that are packed together to varying
degrees. We gave consideration to side-chain flexibility in
our docking by allowing all side-chains to take on configura-
tions found in a detailed rotamer library,19 but in order to
avoid biasing the training set toward complexes with
favorable electrostatics, only steric factors were included in
the scoring function. Each of the 21 proteins in the
homology-culled set was first docked to every other along
10 000 random approach vectors. This set was pruned of any
docked solutions that put the two proteins in very similar
orientations. The top-scoring 100 complexes generated in
the pruned set (the tightly packed set) were subjected to
additional refinement by allowing additional rigid backbone
moves with side-chain flexibility as described above. The
next 60 high-scoring complexes (the loosely packed set) were
refined with flexible side-chains but no additional backbone
moves. Every 50th complex from the rest of the pruned set,
up to a total of 50 (the perturbed set), was perturbed by
pulling the proteins apart by one to four solvent probe
diameters and then performing flexible side-chain refinement.
Although we intend the software that performed these
manipulations to be used in protein docking, this cursory
scheme was intended to generate random juxtapositions of
proteins with varying degrees of tightness, not correct docked
answers.

Table 2. Proteins Used in Training

PDB IDb resolutiona residues charge (e)

1jcd 1.30 50 -2
1gvd 1.45 52 +8
1mof 1.70 53 -3
1i2t 1.04 61 -1
3ebx 1.40 62 +2
1ok0 0.93 74 -5
1c5e 1.10 95 -2
1lni 1.00 96 -7
1jo0 1.37 97 +3
1eaj 1.35 127 -3
2lis 1.35 131 +11
1cxq 1.02 162 +10
1nwa 1.50 168 0
1mf7 1.25 194 +3
1qhv 1.51 195 -1
1g61 1.30 225 -14
1dj0 1.50 264 +4
1gxm 1.32 324 +4
1qcx 1.70 359 -7
1ug6 0.99 426 -6
1iat 1.62 556 +3

a Crystal diffraction resolution, Å. b Of the cases listed, where the
PDB file contained multiple chains, the A chain was the one selected
by PISCES.
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PBSA Calculations. The thermodynamic cycle used to
calculate the total electrostatic energy of complex formation
by solving the linearized Poisson-Boltzmann equation [6]
has been extensively used in the literature and is clearly
illustrated in the work of Elcock and coworkers.20

In [6], ε represents the dielectric scalar field,φ is the
electrostatic potential,Fpro is the macroscopic charge density
due to the solute,â is the reciprocal of temperature times
Boltzmann’s constant, andqk and Nk are the charge and
number density of thekth ion in solution. The electrostatic
energy of a solute is given by [7]:

The electrostatic free energy of forming a complex
between two proteins with low internal dielectricεpro in
continuum water with high dielectricεwater is equal to the
sum of the energies required to bring each isolated protein
out of water into a phase in which the dielectric of the
continuum solvent isεpro, the energy of bringing the two
proteins together as calculated by Coulombic interactions
with dielectricεpro, and the energy of returning the complex
to the continuum water. This cycle is equivalent to calculating
the electrostatic energiesEelec of each separate protein and
the complex using identical grids, subtracting the self-energy
artifacts created by mapping the point charges to the grid
points, and taking the difference in the energy of the complex
and its components.

We used UHBD32 to solve the LPBE for each putative
complex produced by our docking studies on each protein
system. Grids with identical dimensions and alignment were
calculated for each separate protein and the complex. To
minimize boundary artifacts, a coarse grid was first calcu-
lated, large enough that solvent filled roughly 95% of the
volume, using Coulombic potentials with Debye-Hückel
screening for boundary conditions. A finer, focused grid was
used for the thermodynamic calculations, generated using
the coarse grid for boundary conditions and large enough to
encompass the complex by at least 5 Å on all sides.

In our PB formulation, we conformed to the methods used
for PBSA in AMBER ff99. For all proteins,εpro was set to
1 andεwaterwas set to 80. Dielectric smoothing16 was applied
in all cases. A monovalent implicit ion concentration of 0.100
M was used throughout the studies with an implicit ion radius
of 2.1 Å. A grid spacing of 0.5 Å, or the minimum spacing
needed to satisfy the aforementioned size requirements with
a grid of 240 points on a side, was used for the focused
grids. In all calculations, the low-dielectric region was
defined by the solvent-excluded volume with a solvent probe
of radius 1.6 Å and solute atom radii optimized for PBSA
calculations in the context of AMBERff99 (readers should
consult the AMBER 8 source code file pb_init.f for details).
To ensure convergence in each result, the UHBD finite-
difference solver was permitted to run for up to 200
iterations, twice the default number.

Test Cases for ELSCA.To validate ELSCA, we selected
45 protein complexes from a protein:protein docking bench-
mark13 of nonredundant test cases. PDB identifiers for these
complexes are given in Figures 1 and 2. Because protein
complex structures are considerably rarer than those of
individual proteins, we accepted members of the benchmark
into our test set so long as they did not have deeply buried
cofactors or cofactors near the binding site. Residues
immediately before or after an unresolved portion of the
backbone were treated as C- and N-terminal residues,
respectively. Unresolved side-chains were rebuilt using
SCWRL3.0.8,10Each protein complex was energy-minimized

∇‚(ε(r )∇φ(r )) ) -4π[Fpro - ∑
k

âqk
2Nkφ(r )] (6)

Eelec) 1
2∫∫V∫ φ(r )Fpro(r )dr (7)

Figure 1. Properties of native vs non-native protein com-
plexes. In (a), the solvent-accessible surface area buried by
non-native complexes is shown by gray points, that of native
complexes by black donuts. The x-axis has units of Å2. In (b),
the electrostatic energy of the complexes according to numer-
ous methods is shown. Plus signs represent native complexes
and points represent non-native ones. PB-derived energies
(without consideration to the apolar solvation energy given
by a change in SASA) are shown in black, analytic Coulombic
(ε ) 78) just below the PB results in blue, linear DDD (ε ) 5r)
just above the PB results in yellow, and ELSCA results
(including apolar solvation energy) above those of the linear
DDD in red. The x-axis has units of kcal/mol. Each pair of
proteins is represented on a different level in each chart. In
ascending order on both charts, the pairs are the separated
components of crystal structures 1A0O, 1BVK, 1KXV, 1STF,
1ACB, 1CGI, 1FSS, 1TAB, 1AHW, 1CHO (10), 1GLA, 1MAH,
1TGS, 2PTC, 1CSE, 1MEL, 1UDI, 2SIC, 1AVW, 1DFJ (20),
1IAI, 1MLC, 1UGH, 2SNI, 1AVZ, 1DQJ, 1IGC, 2TEC, 1BQL,
1EFU (30), 1JHL, 2VIR, 1BRC, 1EO8, 1PPE, 3HHR, 1BRS,
1FBI, 1QFU, 2JEL (40), 4HTC, 1BTH, 1FIN, 1SPB, and 2KAI.
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according to the protocol used for the training set proteins.
The complexes were then separated and docked to their
partners in the manner described inMethods: Protein
Docking. No docking between noninteracting proteins was
attempted in the test set. None of the complexes produced
by the cursory manipulation scheme came within 10 Å
RMSD of the native complex.

Results
Protein Docking and Complex Selection.To parametrize
a set of pairwise interactions that emulate PBSA results for
general interacting proteins, we created a set of putative
protein complexes from a nonhomologous set of peptide
chains, all with different orientations and degrees of associa-
tion. In docking the proteins, we permitted limited flexibility
by allowing all side-chains in either molecule to take on
discrete rotamer states (seeMethods, Protein Docking),
which permitted closer associations and helped to ensure that
our training set included some diversity in the conformation
of each molecule.

To test whether our methods of producing the training set
can generate complexes that appear native by geometric and
electrostatic standards, we compared the amount of SASA
buried by native complexes in the test set to that buried by
tightly packed configurations of the same proteins (Figure
1a). For some complexes our docking method produced non-
native structures with comparable buried SASA, although
native complexes often bury more surface area than any of
the decoys. Figure 1b reveals that our method only rarely
creates tightly packed complexes with comparable electro-
statics to the native configuration. According to our Poisson-
Boltzmann model, the electrostatic energy of the native
complexes is optimal for nearly every pair of proteins in the
test set, and there is a considerable variation in the energy
of non-native complexes.

We are currently unable to test whether PB electrostatics
are truly discriminatory of native complexes because we have
not yet used PB directly to energy-minimize putative
complexes of interacting proteins. Even while we are working
to overcome this limitation, the data in Figure 1b suggest
that the PB electrostatic model is an outstanding indicator,
relative to other simple electrostatic models, of a native
complex among other members of the tightly packed set. In

contrast to PB, a homogeneous dielectric model (ε ) 78)
typically suggests a “golf-course” electrostatic energy land-
scape in protein association. The linear DDD (ε ) 5r)
appears to be much better at distinguishing native complexes
from non-native, a result that may help to explain the success
of linear DDDs in other docking applications.53,25However,
such a model ultimately has no physical basis, which would
hinder attempts to develop more complete potentials that take
into account nonpolar solvation effects.

Optimizing Basis Functions.A large set of PMFs was
the primary means of accurately reproducing Poisson-
Boltzmann electrostatics using pairwise interactions. How-
ever, a uniform DDD and a crude surface area function
helped make gross corrections to the electrostatic and
nonpolar solvation energy estimates so that the PMFs could
make finer corrections. A screened Coulombic potential
ensured that long-range electrostatic interactions were real-
istically captured. As stated inMethods, the basis set for the
DDD was chosen so that the dielectric constant could be
tuned at short-range and intermediate distances, where the
PMFs taper and the screened Coulombic approximation
begins break down. We foundkPMF ) 3, âPMF ) 0.6, and
λPMF ) 1 to yield good results according to the criteria set
forth in Methods; addition of more basis functions could not
significantly improve the quality of the fit nor could changing
the broadness of the set of basis functions (data not shown).

A successful model must correctly predict the energy of
both native and non-native complexes. As shown in Figure
2, ELSCA is very good at predicting the energies of non-
native complexes of proteins in the test-set, yielding an
overall correlation coefficient of 0.962 (if ELSCA were
applied to its own training set, the correlation is 0.964) and
a RMSD of 26.8 kcal/mol between the predicted and
calculated energies (Figure 2). The regression line for
predicted on calculated values of all non-native complexes
has a slope of 0.89 and bias 11.1 kcal/mol. For predicting
native complexes, the correlation is somewhat lower (0.787),
the RMSD is 29.2 kcal/mol, and the regression line shows a
slope of 1.14 with a bias of 13.0 kcal/mol. For comparison,
a homogeneous dielectric model yields a poor correlation
of 0.229 with our PB results for native complexes, and a
linear distance-dependent dielectric model yields a correlation
of only 0.083.

Figure 2. ELSCA predictions for native, non-native, and separated complexes. ELSCA was trained on 39 153 non-native
complexes of proteins that are not known to form complexes and then tested on 8161 non-native and 45 native complexes of
proteins that are known to associate. The x-axis gives the energy, in kcal/mol, of the complex according to the AMBER ff99
PBSA formulation, the y-axis the ELSCA-predicted value. Predictions for each of the three complex types described in
Methods: Protein Docking are displayed separately.
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Energy along Reaction Pathways.To demonstrate
ELSCA’s ability to predict the features of the energy
landscape, we selected three protein complexes with different
characteristics from the test set and computed the total
electrostatic and solvation energy using PBSA, ELSCA,ε

) 78, andε ) 5r as the ligand was pulled directly away
from the receptor along a putative reaction pathway. Proteins
were held rigid during these tests to eliminate energy
contributions from conformational change in either protein.
Measurements were taken at 0.25 Å intervals, up to 15.0 Å
from the native state. We selected systems 1MAH (acetyl-
cholinesterase and fasciculin-2), 1BVK (lysozyme bound to
a lysozyme-specific antibody), and 1A0O (chea in complex
with chey). Despite quantitative errors in the energy estimates
noted above and in Figure 2, Figure 3 demonstrates that
ELSCA creates a smooth potential energy landscape that
reproduces the features of the benchmark PBSA model, and
thus the critical effects of solvation in protein interactions,
in ways that simpler electrostatic models cannot. ELSCA
can produce energies that are wrong in the native state, but
as shown by the plot of 1BVK approach, ELSCA at least
reproduces the qualitative features of the energy landscape.
Comparison of the parametrized ELSCA model to the other
electrostatic models (Figure 1b) reveals that the native state
is again predicted to be the minimum or (in one case only)
within 3 kcal/mol of the minimum energy of the tightly
packed set. Figure 1b compares ELSCA to PB electrostatic
energies; we remind the reader that ELSCA includes a SASA
term in its formulation (seeMethods: Approximation to the
Total Electrostatic and Nonpolar SolVation Energy) that
cannot be simply dissected from the electrostatic contribu-
tions. However, the effect of the SASA term is small (5 kcal/
mol per 1000 Å2 buried SASA) compared to the magnitudes
of the PB electrostatic energies.

The parameters for the surface area term, PMFs, and
uniform DDD obtained by the least-squares fitting are given
in the Supporting Information.

Discussion
Reproduction of PBSA Results.ELSCA’s estimates com-
pare to PBSA-derived energies with very high correlations.
Furthermore, ELSCA is equally predictive of two very large,
nonredundant sets of proteins, indicating that it is applicable
to proteins in general. The parameterskPMF, âPMF, andλPMF,

which are most important for correctly determining the
energy of closely packed complexes, are somewhat arbitrary;
a comparable quality of fit can be obtained with numerous
PMF and DDD bases, but significant improvements over our
formulation were not found. These results suggest that
ELSCA is nearly the best possible rendering of the PBSA
free energy model in the form of pairwise interactions
between the atoms of each solute; additional improvements
require consideration of the local atomic environments.

In this study, we have parametrized ELSCA over a set of
non-native complexes that were not optimized in terms of
electrostatics because the vast majority of structures that will
be sampled in protein docking or association simulations will
be non-native. Despite the fact that electrostatic comple-
mentarity typifies protein interfaces, the parameters transfer
well to native complexes. Indeed, the data points for native
complexes in Figure 2 can be seen as an extension of the
data for the most tightly packed non-native complexes. The
lower correlation is largely due to the fact that native
complexes have consistently low energy in the PBSA model,
whereas non-native, tightly packed complexes can have a
broad range of energies. Further improvements in this regime
may be possible by including hundreds to thousands of
natural interfaces in the training set.

ELSCA’s potentials of mean force and uniform distance-
dependent dielectric are meant to be superimposed on van
der Waals and electrostatic grids and lookup tables so that
ELSCA may be as computationally tractable as any gas-
phase energy calculation or grid-based calculation used in
simulations and docking studies. Implicit solvent simulations
of protein association can be significantly accelerated using
ELSCA rather than a model such as GBSA which depends
on frequently recalculating atomic polarization radii. Sig-
nificant enhancements are also possible for methods based
on rotamer libraries which require pairwise additive interac-
tions. Once the ELSCA functions are stored in lookup tables
(and, ideally, mapped to grids), the implementation is trivial.
Because the PMFs used in ELSCA are smoothly varying,
grid-based artifacts should be minimal when ELSCA is
applied in grid-based calculations.

Alone, none of the PMFs has physical significance and
the DDD is realistic only at distances greater than 60 Å,
where it reproduces Debye-Hückel screening effects of the
ionic solvent. Together, however, all these functions repro-

Figure 3. Reproduction of energy landscapes for three complexes. ELSCA was used to reproduce electrostatic plus apolar
solvation energy (y-axis, units of kcal/mol) along a hypothetical, linear reaction pathway for three different protein systems (x-
axis denotes distance from the native state, in Å). Similar to Figure 1b, black represents PBSA energy, red ELSCA, blue a
homogeneous dielectric (ε ) 78), and yellow a linear DDD (ε ) 5r).
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duce a model that can realistically account for desolvation
and solvent ion effects. For docking studies, ELSCA is
expected be nearly as useful as the PBSA model because it
reproduces the features of the PBSA energy landscape
(Figure 3) and obtains few competing minima that PBSA
would not have (Figure 1a,b). However, there is ongoing
debate about the validity of implicit solvent models. ELSCA
has promise as an investigative tool, but like Generalized
Born and other theoretically benchmarked approximations
it is ultimately limited by the model it emulates.

ELSCA in Context. A number of studies have used
potentials of mean force between multiple atom types to
approximate nonlinear functions in molecular modeling,
many of them stemming from the work of Miyzawa and
Jernigan.35,36Such models often rely on short-ranged poten-
tials parametrized by statistical distributions found in a
homology-culled database of protein structures such as the
Protein Data Bank.5 The set of atomic contact energies
(ACE)54 is a very detailed example of such “knowledge-
based” potentials, using step-functions to describe the transfer
of various atoms in the selected force field between
hydrophobic and aqueous environments. ACE accounts for
solvation energy contributions to protein stability but must
be augmented by an approximation for solvent screening
electrostatic interactions. In contrast to other PMF models
that are only able to assess the energy of a bound state,
ELSCA is intended specifically for estimating the electro-
static energy of protein:protein association as the partners
come within a few solvent layers of one another and as they
bind. The basis functions used in ELSCA are continuously
differentiable and longer-ranged than those used in most other
PMFs, essential features of a model that is intended to predict
interactions over a range of intermolecular separations.

By assuming a Hamiltonian that separates into solvation
free energy and molecular-mechanics interactions and the
existence of pairwise additive potentials of mean force for
various chemical groups, Lazaridis and Karplus built the
EEF1 model27 for solvation energy of proteins. These are
the same basic assumptions that were used to construct
ELSCA. Again like ELSCA, EEF1 uses Gaussians as the
basis functions for its PMFs and works in tandem with a
uniform distance-dependent dielectric (ε ) r in this case)
and can be superimposed on the gas-phase molecular
mechanics energy for a modest computational cost. EEF1 is
intended for use in protein folding and single-protein
dynamics problems, where the internal energy of the
molecule varies as its conformation changes. Such a model
could be a powerful complement to ELSCA, which addresses
the change in solvation and electrostatic association energy
in complex formation, not the energy of changing each
molecule’s configuration from a particular reference state.

One other pairwise additive PMF model should be
mentioned because of its notable similarity to ELSCA in
design and purpose. Jiang and co-workers26 built a model
for the total free energy of protein:protein association using
four general heavy atom types, distinguishing between atoms
of each type on the ligand and receptor to construct sixteen
PMFs. This model achieved a correlation coefficient of 0.75
between its scores and the experimental binding energies of

28 protein complexes and recovered important features such
as a potential well between hydrogen-bond donors and
acceptors at the correct hydrogen-bonding distance. This is
nearly the consistency by which ELSCA, given its current
training set, reproduces native complex energies, but there
is no way to judge the model’s accuracy in reproducing
nonisolable protein complexes and intermediates. ELSCA’s
primary advantages in reproducing its training data are likely
the consistency by which the data is generated and the
limitless number of data points available, which permits
distinctions between many more atom types. Again, this is
an advantage only if the model ELSCA emulates is realistic.

Future Directions. We plan to extend ELSCA’s PMFs
to estimate the solute-solvent dispersion energy as derived
by a continuum model based on volume integration while
retaining the linear function of surface area for the work of
cavity formation.29,52 ELSCA is implemented in a develop-
mental docking program, GRAPPLE, which is ultimately
intended to emulate state-of-the-art binding energy calcula-
tion techniques24,31,37to dock proteins and determine transi-
tion paths in binding by computing the free-energy landscape
of the interaction at high resolution.
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Abstract: A procedure to determine the electrostatic parameters has been developed for a

polarizable empirical force field based on the classical Drude oscillator model. Atomic charges

and polarizabilities for a given molecule of interest were derived from restrained fitting to quantum-

mechanical electrostatic potentials (ESP) calculated at the B3LYP/ cc-pVDZ or B3LYP/aug-cc-

pVDZ levels on grid points located on concentric Connolly surfaces. The determination of the

atomic polarizabilities requires a series of perturbed ESP maps, each one representing the

electronic response of the molecule in the presence of a background charge placed on Connolly

surfaces primarily along chemical bonds and lone pairs. Reference values for the partial atomic

charges were taken from the CHARMM27 additive all-atom force field, and those for the

polarizabilities were based on adjusted Miller’s ahp atomic polarizability values. The fitted values

of atomic polarizabilities were scaled to reflect the reduced polarization expected for the

condensed media and/or to correct for the systematic underestimation of experimental molecular

polarizabilities by B3LYP calculations. Following correction of the polarizabilities, the atomic

charges were adjusted to reproduce gas-phase dipole moments. The developed scheme has

been tested on a set of small molecules representing functional moieties of nucleic acids. The

derived electrostatic parameters have been successfully applied in a preliminary polarizable

molecular dynamics simulation of a DNA octamer in a box of water with sodium counterions.

Thus, this study confirms the feasibility of the use of a polarizable force field based on a classical

Drude model for simulations of biomolecules in the condensed phase.

1. Introduction
Computer simulations based on empirical force fields are
now a standard procedure to investigate biological phenom-

ena.1 Empirical force field calculations, due to the simplicity
of the potential energy function, allow for atomic detail
studies of biomolecules with explicit representation of the
condensed phase environment to be performed. However, it
is essential that the force field accurately reproduces the
experimental regimen to ensure the quality of results of such
calculations.

The majority of force fields consist of electrostatic, van
der Waals, and bonding energy terms calculated in a pairwise
additive fashion.2 The induced polarization, which arises from
a perturbation of the electronic structure of the molecular
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species in response to the external electric field, is typically
incorporated implicitly by using enhanced fixed partial
atomic charges reflecting the average polarization taking
place in the condensed phase. Despite the apparent simpli-
fication, additive empirical force fields have been remarkably
successful in modeling complex molecular systems for the
last two decades.3 However, there are shortcomings in the
additive model,4 emphasizing the need to account for many-
body induced polarization effects in an explicit way,
motivating the development of polarizable force fields.

Current polarizable models can be classified into three
major categories: point dipole, charge transfer, and classical
Drude oscillator (or shell models); information about each
of these models can be found elsewhere.4,5 While a variety
of efforts are ongoing to apply the point dipole and charge-
transfer methods to biological systems,6-27 the classical
Drude oscillator approach has only seen minimal attention.28-30

The Drude oscillator polarizability model was first introduced
by Paul Drude in 1900 as a simple approach to describe the
dispersive properties of materials.31 The classical version of
this model has been successfully used in statistical mechan-
ical studies of condensed systems to treat electronic polar-
izability5 and has been recently implemented32 into the
CHARMM program.33,34

Creation of a force field for biomolecular systems tradi-
tionally starts with the development of a water model. The
polarizable SWM4-DP water model based on the classical
Drude oscillator formalism has recently been presented.30 It
was parametrized to reproduce properties of liquid water
under ambient conditions as well as some gas-phase proper-
ties such as the dipole moment and the interaction energy
of the water dimer. In the SWM4-DP water model the
polarizability of the oxygen atom, which in this case is
equivalent to the molecular polarizability (since no Drude
particles for hydrogen atoms were considered), was found
to be 1.04 Å3, which is 0.724 of the experimental gas-phase
molecular polarizability of water, 1.44 Å3.35 Such reduced
polarizability, which is essential to reproduce liquid-phase
properties of water, including the dielectric constant, has been
attributed to the energy cost of overlapping electron clouds
in the condensed phase opposing induction.30,36-41

In the present work, steps toward systematic development
of a polarizable force field based on the classical Drude
oscillator model are presented. The determination of the
electrostatic parameters is considered as the first step toward
this goal. This effort, which includes fitting of partial atomic
charges and atomic polarizabilities to a series of electrostatic
potentials (ESP) around a molecule, each in the presence of
an individual background charge, is the main focus of the
present study. The theoretical background for the classical
Drude oscillator model and the methodological details of the
electrostatic parameter fitting are discussed in the next
section. Validation of the theoretical level used in the
derivation procedure is presented followed by a discussion
of the selection of the reference values for charges and
polarizabilities. Then, an example is given for the application
of that procedure to the cytosine base, a model compound
for nucleic acids. Finally, the validity of the proposed
approach is illustrated via a condensed phase simulation of

a DNA octamer using a preliminary classical Drude polariz-
able force field.

2. Theory and Methods
2.1. Classical Drude Oscillator Model.According to the
classical Drude oscillator model, the polarizability is intro-
duced by adding massless charged particles attached to each
polarizable atom by a harmonic spring (Figure 1). Thus, a
finite induced dipole is created and the partial atomic charge
of atom A,q(A), is redistributed between the Drude particle,
qD(A), and the atomic core,qc(A). The positions of the Drude
particles relative to the corresponding atomic centers are
determined self-consistently by seeking the minimum energy
consistent with the Born-Oppenheimer approximation. For
the equilibrium position of the Drude particles, the atomic
polarizability of atom A,R(A), is related to the charge
qD(A) via the equation

where kD is the force constant of the harmonic spring
connecting a Drude particle to its corresponding atomic core.
The magnitude ofkD is chosen to achieve small displace-
ments of Drude particles from their corresponding atomic
positions,rD, as required to remain close to the point-dipole
approximation for the induced dipole associated with the
atom-Drude pair.32 Consequently, the atomic polarizability
is determined by the amount of charge assigned to the Drude
particle. Thus, the only adjustable parameters to be deter-
mined during parametrization of a polarizable atom A in the
Drude model are the partial atomic chargesq(A) ) qc(A) +
qD(A). The development of a consistent protocol for the
determination ofqc(A) and qD(A) (or R(A)) for a series of
model compounds is, in part, the subject of the present study.

One of the major advantages of the classical Drude
oscillator model is that it preserves the simple functional form
of the pairwise additive force field and yet explicitly accounts
for the electronic polarizability.32 The electrostatic energy
from the additive force field is substituted in the polarizable
model by the Coulombic energy terms describing interactions
between atomic cores and Drude particles and the self-energy
of a polarizable atom treated via a harmonic term

Figure 1. Classical Drude oscillator model using a formal-
dehyde molecule as an example. The displacements of the
Drude particles, qD, attached to the non-hydrogen atomic cen-
ters are exaggerated for clarity.

R(A) ) qD
2(A)/kD (1)
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whereN and ND are the number of real atoms and Drude
particles, respectively,qc and qD are the atomic core and
Drude particle charges, respectively, andr and rD are the
positions of the real atoms and Drude particles, respectively.
Modifying the classical force field energy function using eq
2 facilitates performing dynamical simulations with only
minor modifications to existing programs, because the
original energy functional form remains essentially un-
changed. Computationally this means that the Drude particle
positions for a given atomic configuration have to be self-
consistently adjusted for each step of the dynamics simula-
tion; however, such calculations are inefficient and rather
expensive.32 Therefore a molecular dynamics simulation
algorithm based on the extended Lagrangian formalism42,43

has been implemented, in which a small mass is attributed
to the Drude particles, and the amplitude of the oscillators
is controlled with a low temperature thermostat.32 This
technique allows the computationally expensive self-
consistent field (SCF) regimen of molecular dynamics
simulations to be avoided. Tests of the extended Lagrangian
algorithm have shown that stable and accurate molecular
dynamics trajectories can be generated, yielding liquid
properties equivalent to the SCF regimen of molecular
dynamics at a fraction of the computational cost.32 Therefore,
the classical Drude oscillator model for simulating atomic
polarizability can be applied for molecular modeling in
condensed media including macromolecular systems such
as fully solvated nucleic acids, proteins, and lipid aggregates.
However, the existing parameters from the nonpolarizable
force fields need to be adjusted to take into account the
presence of Drude particles.

2.2. Charge Fitting Scheme.The electrostatic properties
of a molecular mechanics model with Drude polarizabilities
are represented by atomic core chargesqc(A) and Drude
chargesqD(A) producing the effective atomic chargeq(A)
as their sum. Indeed, in the classical Drude oscillator
polarizable model, the determination of atomic polarizabili-
ties R(A) can be reduced to the determination of the partial
charges of Drude particles,qD(A). Both q(A) andqD(A) can
be determined simultaneously, in a single fitting step.

Partial atomic charges are often obtained by optimizing
the fit of an electrostatic potentialφMM derived from the
molecular mechanics (MM) model to a potential mapφQM

generated by quantum-mechanical (QM) calculations on a
set of grid points{rg} placed around the molecule. Although
partial atomic charges of a nonpolarizable model can be
extracted from a single QM potential map, adjusting the
polarizabilities requires a series of response potential maps
φp

QM, each one representing the altered charge distribution
for the molecule in the presence of a small perturbing point
chargezp at a given positionrp. A similar approach was used
by Friesner et al. to derive parameters for the fluctuating
charge and polarizable dipole models.17,37,44In our calcula-

tions the value of the perturbing chargezp was arbitrarily
chosen to be+0.5e. The MM potential at theg-th grid point
(at the coordinater g) for the molecule under the influence
of a point-charge perturbation at positionr p is

where dp(A) is the Drude particle displacement from the
corresponding atomic center position,r (A), in response to
the perturbationp. The last term is the contribution from
the perturbation charge itself.

During the fitting procedure, all core atomic and Drude
charges have to be adjusted to minimize the discrepancy
between the QM and MM potential maps, i.e., to minimize
the following function:

The functionφpg
MM has three unknown parameters:qc, qD,

anddp. The first two are the subject of the standard least-
squares fitting procedure, but the Drude particle displace-
ment, dp, requires special consideration. Because of the
implicit charge-dependence of the displacementsdp(A), the
system of equations

whereq(A) designates eitherqc or qD assigned to an atomA
has to be solved iteratively. We use the Levenberg-
Marquardt algorithm,45 specially designed to minimizeø2

functions (see below). First, Drude displacements,dp, are
optimized to minimize total energy of the molecular system
using atomic charges from the initial guess. This is followed
by an ESP fitting step using the current positions of the atoms
and Drude particles. The new set of fitted charges is again
used to optimize the coordinates of the Drude particles. The
iterative procedure is continued until eq 5 is satisfied.

Because the charge fitting problem is underdetermined,
directly solving eq 5 usually leads to partial charges having
poor chemical significance.46 This is mainly due to the small
contribution of some charges to the overall electrostatic
potential associated with the screening of the charge on
buried atoms by atoms located on the periphery of the
molecule. To optimize individual charge contribution to the
minimization function, it is necessary to penalize charge
deviations from “chemically intuitive” reference values, as
long as the penalty does not significantly deteriorate the
quality of the fit. This requirement motivated the inclusion
of restraints during charge fitting, referred to as restrained
electrostatic potential (RESP) fitting. The original RESP
scheme of Bayly et al.46 minimizes

through adding a penalty term in one of the two following
forms

Uelec) ∑
A < B

N qc(A) ‚qc(B)

|r (A) - r (B)|
+ ∑

A < B

N,ND qD(A) ‚qc(B)

|rD(A) - r (B)|
+

∑
A < B

ND qD(A) ‚qD(B)

|rD(A) - rD(B)|
+

1

2
∑
A

ND

kD|rD(A) - r (A)|2 (2)

φpg
MM ) ∑

A

N ( qc(A)

|r (A) - rg|
+

qD(A)

|r (A) + dp(A) - rg|) +
zp

|rp - rg|
(3)

øφ
2[qc,qD] ) ∑

p,g

(φpg
QM - φpg

MM)2 (4)

∂øφ
2

∂q(A)
) 0 (5)

ø2 ) øf
2 + ør

2 (6)
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wherew is a weighting constant. The first restraint (7) is
forcing the chargesq(A) to their “reference” valuesqj(A),
and the second restraint (8) favors smaller magnitude charges,
whereb is a hyperbolic stiffness parameter.

The RESP scheme can be generalized to the presence of
Drude particles yielding the following parabolic (9) and
hyperbolic (10) equations, respectively,

wherew and wD are weighting factors for real atoms and
Drude particles, respectively;b and bD are the respective
stiffness constants;q(A) is the atomic charge representing
the sum of atomic core and Drude particle charges, andqj(A)
is the reference charge. Due to the Drude charge- atomic
polarizability formal equality (1) postulated by the classical
Drude oscillator model, eqs 9 and 10 effectively lead to
restraining the atomic polarizabilities.

To allow for additional flexibility of the fitted charges and
polarizabilities, flat well potentials can be introduced into
the fitting procedure. The parabolic restraint can be used only
on the amount of charge deviating fromqj by more than a
fixed charge toleranceqflat. This allows the chargeq to vary
at no cost within the interval [qj - qflat, qj + qflat] and creates
a restraint only when the deviation is larger thanqflat. The
charge fitting algorithm outlined above is implemented in
the module FITCHARGE in the latest release of the
CHARMM program.33,34

2.3. Grid Generation and Placement of Perturbation
Charges.Electrostatic charge fitting procedures traditionally
use QM electrostatic potentials determined on a cube based
grid, with the grid points placed at an equidistant separation
from each other. A limitation of this approach is the
nonunique definition for the selection of the axes for the
cube and lack of control over significance of each grid point.
One approach to eliminate the orientation dependence is to
use random point generation within the defined cube.
However, this solution is not ideal due to reproducibility
issues. In addition, for computational efficiency it seems
reasonable to avoid placing grid points in regions having
minimal chemical relevance. This is especially important
when the molecular shape is significantly different from a
spherical form. The well-known surface reflecting molecular
shape, the Connolly surface,47 is ideal for grid point place-
ment. Such a structurally aware grid reduces the number of
required grid points, facilitating the least-squares fitting by
reducing the number of linear equations to solve, as well as

maximizing the information content in selected regions
around a molecule with the most chemical significance. The
methodology is expected to be particularly advantageous for
large molecules.

In practice, a Connolly surface is generated by overlapping
atomic spheres and preserving only those regions of the
spheres located on the periphery of a molecule. Surface
building is based on using the van der Waals radii for the
atomic spheres. Multiplication of all the atomic radii of the
molecule by a constant creates a Connolly surface at the
desired distance from the atomic centers. Choosing several
different multiplication constants allows for creation of a set
of nonintersecting Connolly surfaces. Similar considerations,
as discussed above regarding the grid point placement, also
apply to the placement of perturbation charges around the
molecule. Multiple Connolly surfaces carrying the perturba-
tion charges are required to probe molecular polarizability
at different distances from the atomic centers. The chosen
solution provides a simple mechanism to control the locations
and number of point charges to place.

The simplest technique for point placement on a particular
Connolly surface is to generate equidistant points on the
atomic spheres at a selected density and to delete all the
points which are within the overlapping spheres. The
algorithm for placing grid points on the atomic sphere moves
an atom to the center of the coordinate system, assigns the
atom a unit radius, and generates points according to the
sphere equationx2 + y2 + z2 ) 1. Next, the atomic sphere
is scaled to the desired radius, and coordinates of the grid
points are translated accordingly. Then a back translation of
the atomic center to its original position is performed with
simultaneous translation of coordinates of the generated grid
points. These steps are applied to each atom of the molecule,
and grid points in overlapping atomic spheres are deleted.
This creates the final set of points situated on the Connolly
surface.

By changing the number of grid points on a particular
Connolly surface one can increase or decrease the contribu-
tion of that surface to the fitted molecular properties.
Typically, large contributions from the nearest and most
distant Connolly surfaces should be avoided; the nearest
surface is approaching distances where the deviation from
the atomic point charge approximation of the electronic
distribution is still nonnegligible, while the contribution of
the most distant surface may shift the accuracy of charge
fitting to larger distances than those at which hydrogen
bonding occurs. The following rationale may be used to
identify the minimal number of Connolly surfaces for the
placement of perturbation charges and grid points. The first
layer of perturbation charges may be placed at distances
typical for hydrogen bonds followed by a layer of grid points
to detect an immediate ESP change caused by a perturbation
charge. Several layers of perturbation charges are needed to
adequately capture the orientational dependence of molecular
polarizability. Therefore at least one more layer of perturba-
tion charges is necessary followed by one more layer of grid
points. Finally one additional distant layer of grid points is
necessary to resolve the molecular dipole moment, which is
a far-field molecular property. These operations yield five

ør
2 ) w∑

A

N

[q(A) - qj(A)]2 (7)

ør
2 ) w∑

A

N

[xq2(A) + b2 - b]2 (8)

ør
2 ) ∑

A

N

{w[q(A) - qj(A)]2 + wD[qD(A) - qjD(A)]2} (9)
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A
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2(A) + bD

2 - bD]2} (10)

156 J. Chem. Theory Comput., Vol. 1, No. 1, 2005 Anisimov et al.



nonintersecting Connolly surfaces in total, two for per-
turbation charges and three for grid points, illustrated as
(1) charges, (2) grid, (3) charges, (4) grid, and (5) grid
according to increasing distance from the atomic centers. This
number can be expanded as required based on computational
tests.

The charge placement method employs a set of additional
rules to the Connolly surface construction that further reduces
the number of the charges. These additional rules are
designed to assign perturbation charges to places of chemical
significance, i.e., along covalently connected atoms and lone
pairs where polarizability is expected to be largest. The
perturbation points are prioritized into three groups according
to the order of their generation. Charges placed along
chemical bonds are first generated. If two atoms, A and B,
are linked by a covalent bond, two perturbation points along
the line A-B are generated that intersect with the corre-
sponding Connolly surfaces on opposite sides of the bond.
A newly generated charge will not be saved if it is too close
to a previously generated charge. The distance criteria
imposed in this study is 1.5 Å. The second group of
perturbation points is created to sample regions around lone
pairs on sp3 hybridized oxygen or sp2 hybridized nitrogen
atoms, A, when these atoms have just two covalently bound
neighbors (A1 and A2). In this case a bisector line is drawn
in the plane of the covalent bonds of atom A, dividing the
valence angle (A1-A-A2) in half (Figure 2). On the side of
the lone pairs a perturbation point, P1, is generated along
this line where it intersects with the Connolly surface. Two
more points, P2′ and P2′′, are generated on the line coming
through point A, perpendicular to the plane defined by atoms
A1, A, and A2 on the two opposite sides of the plane. Two
other points, P3′ and P3′′, are generated on the bisector line
of angles P1-A-P2′ and P1-A-P2′′. All these points are placed
on the intersection of the Connolly surface with the corre-
sponding line.

The last group of charges is created to close gaps between
the previously placed perturbation points providing nearly
equivalent coverage of the molecular shape by perturbation
charges. The generation of the grids and the placement of
perturbation charges are performed using the stand-alone
program CGRID developed in our laboratory.

2.4. Molecular Dipole and Polarizability. The dipole
moment and polarizability are important molecular properties
which may be used to validate the quality of derived
electrostatic parameters through comparison with experi-
mental and/or QM values. To calculate molecular dipole
moments, µ, the position of Drude particles must be

optimized self-consistently. Thenµ can be calculated from
the sum over all charges using the following equation

whereN and ND are the number of real atoms and Drude
particles, respectively,qc and qD are the atomic core and
Drude particle charges, respectively, andr and rD are the
positions of the real atoms and Drude particles, respectively.

Polarizability is a measure of the response of a molecular
system to an external electric field. Experimental measure-
ment of isotropic molecular polarizability is conventionally
conducted by measuring the refractive indexη48

wheren is the number density of the gas or liquid. In the
present MM picture, the fast linear response of the electronic
density to the excitation of a beam of light is modeled by
the quasi-instantaneous readjustment of the Drude particles.
The total molecular polarizabilityR of the MM model can
be calculated in analogy with its standard QM definition, as
the sum over all excitation modes of the square of the
response dipole divided by the excitation energy. Being a
linear-response coefficient, it can be summed over the
vibration modesν of the molecule obtained from normal-
mode analysis of the polarizable MM model, complete with
atomic cores and Drude particles. In terms of the Cartesian
normal mode vectorsAν, the components of the tensorR
are

whereµi are components of the molecular dipole moment
and U is the potential energy of the model. The isotropic
polarizability valuesRiso can be calculated as a trace of the
molecular polarizability tensor, i.e.,Riso ) 1/3(Rxx + Ryy +
Rzz). This formula was implemented in the VIBRAN module
of the CHARMM program. Only the very-high-frequency
normal modes, attributed to Drude particle excitations, are
summed, since the polarizability is modeled through the
movement of these auxiliary particles. Given the much lighter
mass of the Drude particles, a frequency cutoff atν0 ) 5000
cm-1 ensures that the normal modes associated with the
vibrations of nuclei are excluded. The zero-frequency rotation
and translation modes are ignored as well. It should be noted
that the calculation of molecular polarizabilities requires full
optimization of the molecular structure, since the harmonic
approximation used in the vibrational analysis is valid only
for equilibrium geometries.

2.5. Computational Details.The determination of elec-
trostatic parameters for the polarizable force field is a multi-
step iterative procedure and employs both QM and empirical
force field calculations. QM calculations were performed
using the Gaussian 98 suite of programs.49 Geometry opti-
mizations were performed at the MP2(fc)/6-31G(d) level of
theory for neutral species and at the MP2(fc)/6-31+G(d,p)

Figure 2. The placement of perturbation charges (P) for
polarizability probing the region around lone pairs of sp3

hybridized oxygen or sp2 hybridized nitrogen atoms (A).

µ ) ∑
A

N

qc(A)r (A) + ∑
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qD(A)rD(A) (11)

R ) 3
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level for ions.50-53 This level of theory provides molecular
geometries consistent with available gas-phase experimental
data, and it has been previously utilized during optimization
of the CHARMM27 all-atom empirical force field for nucleic
acids.54 Geometry optimizations of adenine, cytosine, and
guanine bases were conducted with the amino group planarity
enforced, since it is believed that an amino group will acquire
an approximately planar geometry due to hydrogen bonding
with complementary bases and solvent molecules. No
constraints were imposed during optimizations of other test
molecules.

Selection of the appropriate level of theory for determi-
nation of the ESPs required for calculation of the charges
and polarizabilities is important. Ideally, to ensure high
accuracy in the ESP, a highly correlated method in conjunc-
tion with a very large basis set should be used, since
computed dipole moments and molecular polarizabilities
strongly depend on the level of theory and size of the basis
set employed. However, when developing a force field for
biomolecular systems it is necessary to have a large number
of model compounds in the training set, with many of those
compounds being relatively large, i.e., greater than 20 non-
hydrogen atoms. All these requirements are unlikely to be
satisfied in full and therefore a compromise between accuracy
of the theoretical model and its computational performance
is necessary.

QM calculations of the molecular electrostatic potentials
were performed on MP2 optimized geometries using the
B3LYP hybrid functional55-57 and the correlation-consistent
double-ú Dunning cc-pVDZ and aug-cc-pVDZ basis sets.58

Single-point energy B3LYP calculations were performed
with the tight convergence criteria producing the target QM
ESP maps. Cartesian coordinates for grid points and pertur-
bation charges for the ESP calculation were generated by
the program CGRID described above and read by Gaussian
from external files. The generated QM ESP maps were
extracted from the Gaussian output to use as input to the
electrostatic parameter fitting by the FITCHARGE module
of the CHARMM program. Restrained fitting using the RESP
algorithm employed a penalty function with 10-5 Å-2 for
the weighting factor. The flat well potential described above
was applied allowing penalty-free deviation of charges by
0.1e in both directions from the corresponding reference
values. Coordinates of the Drude particles were self-
consistently adjusted after each change of the optimized
charges during the charge fitting procedure to minimize the
potential energy of the system, whereas coordinates of real
atoms were fixed to the corresponding MP2 geometry.

Following the fitting procedure the atomic charges and
polarizabilities were scaled. Polarizability scaling is necessary
to reflect the reduced polarization expected for the condensed
media and/or to correct for systematic underestimation of
the experimental values by B3LYP/cc-pVDZ calculations
(see below). Atomic charge scaling for neutral compounds
can be performed to reproduce experimental or high-level
QM gas-phase target molecular dipole moments. In addition,
rounding of fitted and scaled charges and polarizabities to 3
decimal places was performed to facilitate their transferability
while preserving the value of the net molecular charge.

Technical details of the scaling and rounding procedure are
described in the Supporting Information. In this study,
similarly to the SWM4-DP water model, the polarization of
only “heavy” (i.e. non-hydrogen) atoms is considered
although the method can be easily extended to all atoms at
the increase of the computational expense.

In all Drude polarizable CHARMM calculations, the Drude
particles were attached to the real atoms via a harmonic
spring with a force constant of a 1000 kcal/(mol‚Å2). This
force constant is of sufficient magnitude to prevent large
displacement of the Drude particle from its atom and thus
ensure the validity of the point dipole approximation.30 In
this scenario, the atomic polarizabilities unequivocally
determine the magnitude of Drude charges from eq 1. In
addition, the sign of the charges on Drude particles is
irrelevant due to the point dipole approximation. We chose
qD to be negative by analogy with the electron charge.

Molecular dynamics (MD) simulations were performed at
300 K and 1 atm pressure using the new velocity Verlet
integrator32 implemented in CHARMM.33,34 The extended
Lagrangian double-thermostat formalism32 was used in all
polarizable MD simulations where a mass of 0.1 amu was
transferred from real atoms to the corresponding Drude
particles. The amplitude of their oscillation was controlled
with a separate low-temperature thermostat (at aT ) 1 K)
to ensure that their time course stays close to the SCF
regimen.32 A Nosé-Hoover thermostat with a relaxation time
of 0.1 ps was applied to all real atoms to control the global
temperature of the system. A modified Andersen-Hoover
barostat with a relaxation time of 0.1 ps was used to maintain
the system at constant pressure. Condensed-phase MD
simulations were performed using periodic boundary condi-
tions and SHAKE to constrain covalent bonds involving
hydrogens.59 A 1 fs time step was used for the extended
Lagrangian polarizable MD simulation. The electrostatic
interactions were treated using particle-mesh Ewald (PME)
summation60 with a coupling parameter 0.34 and 6th order
spline for mesh interpolation. Nonbond pair lists were
maintained out to 14 Å, and a real space cutoff of 12 Å was
also used for the Lennard-Jones parameters within the atom-
based force switch algorithm.61 The long-range van der Waals
correction recently implemented into CHARMM was also
applied.62,63

Validation of the electrostatic parameters optimization
method, along with proof of concept that the classical Drude
oscillator model is applicable to biomolecular condensed
phase simulations, was obtained via a MD simulation of
DNA in solution. The preequilibrated GAGTACTC duplex
DNA structure solvated in a box of water with sodium ions
was taken from our previous study.64 1746 water molecules
and 14 sodium ions were used. The solvated molecular
system contains 9586 atoms including Drude particles.
Starting from the CHARMM27 additive force field equili-
brated system,64 the Drude particles and then solvent
molecules were minimized for 200 steps using the steepest
descent (SD) algorithm with all DNA real atoms fixed. Then
the minimized structure was subjected to a 20 ps NPT MD
simulation with all DNA atoms, excluding the Drude
particles, harmonically constrained with a mass weighted
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force constant of 2 kcal/(mol‚Å2) to equilibrate the solvent
around the DNA. The final structure from that simulation
was then subjected to two 200 step SD minimizations, first
for Drude particles and then for all atoms prior to initializa-
tion of the production trajectory. The simulation was run
for 1000 ps with coordinates saved every 2 ps for analysis.

3. Results and Discussion
3.1. QM Calculations of Molecular Dipoles and Polariz-
abilities. The performance of B3LYP/cc-pVDZ and B3LYP/
aug-cc-pVDZ calculations on MP2 optimized geometries in
reproducing experimental gas-phase dipole moments and
polarizabilities was first verified. Model compounds for
which experimental values of molecular polarizabilities
and/or dipole moments are available were chosen to represent
different chemical classes as well as building blocks of
biomolecules. The experimental and B3LYP calculated
dipole moments are summarized in Table 1. The data indicate
that both B3LYP/cc-pVDZ and B3LYP/aug-cc-pVDZ single-
point energy calculations generally provide reasonable
estimates of the dipole moment magnitudes. In many cases
some underestimation of the experimental values can be
noted for the B3LYP/cc-pVDZ calculations, whereas aug-
menting this basis set with diffuse functions in general results
in a slight overestimation of the gas-phase molecular dipole

moments. The average ratio of calculated to experimental
dipole moments for compounds listed in Table 1, excluding
water, was 0.94 and 1.05 for the cc-pVDZ and aug-cc-pVDZ
basis sets, respectively.

Experimental and calculated molecular polarizabilities for
selected compounds are summarized in Table 2. In all cases
the experimental gas-phase molecular polarizabilities are
underestimated by the B3LYP/cc-pVDZ calculations. The
degree of the discrepancy is the largest for water (almost
50%) and substantially smaller for the remaining compounds.
Importantly, for the majority of compounds the ratio of
B3LYP to experimental polarizabilities is quite uniform, with
an average value of 0.83( 0.06. As data in Table 2
demonstrate the substantial deviation of calculated from
experimental values of polarizabilities can be corrected by
augmenting the cc-pVDZ basis set by diffuse functions,
which provides better quantitative agreement with the
experimental data. Thus, B3LYP/ aug-cc-pVDZ QM calcula-
tions may be considered the method of choice for calculation
of the ESP data for electrostatic parameter fitting. However,
QM calculations with the aug-cc-pVDZ basis set are much
more computationally expensive and become impractical for
large and flexible molecules such as nucleosides. For
example, for the guanine nucleoside cc-pVDZ and aug-cc-
pVDZ basis sets consist of 331 and 554 basis functions,

Table 1. Summary of Experimental and QM Calculated Dipole Moments (Debye)a

B3LYP/cc-pVDZ B3LYP/aug-cc-pVDZ

molecule experimental ratio ratio

water H2O 1.855 ( 0.004 1.910 1.03 1.854 1.00
propane C3H8 0.084 ( 0.001 0.070 0.83 0.096 1.15
isobutene C4H10 0.132 ( 0.002 0.110 0.83 0.147 1.12
pentene-1 C5H10 0.500b 0.400 0.80 0.447 0.89
toluene C7H8 0.375 ( 0.01 0.380 1.01 0.405 1.08
fluoromethane CH3F 1.858 ( 0.002 1.757 0.95 1.873 1.01
fluorobenzene C6H5F 1.600 ( 0.08 1.394 0.87 1.603 1.00
chlorobenzene C6H5Cl 1.690 ( 0.03 1.667 0.99 1.749 1.03
methanol CH4O 1.700 ( 0.02 1.576 0.93 1.680 0.99
ethanol (trans) C2H6O 1.440 ( 0.03 1.483 1.03 1.598 1.11
ethanol (gauche) C2H6O 1.680 ( 0.03 1.538 0.92 1.727 1.03
dimethyl ether C2H6O 1.300 ( 0.01 1.200 0.92 1.306 1.00
tetrahydrofuran C4H8O 1.750 ( 0.04 1.695 0.97 1.865 1.07
trimethylamine C3H9N 0.612 ( 0.003 0.450 0.74 0.591 0.97
dimethyl sulfide C2H6S 1.554 ( 0.004 1.471 0.95 1.620 1.04
ethanethiol (trans) C2H6S 1.580 ( 0.08 1.557 0.99 1.669 1.06
acetaldehyde C2H4O 2.750 ( 0.006 2.600 0.95 2.965 1.08
acetone C3H6O 2.880 ( 0.03 2.789 0.97 3.167 1.10
acetic acid C2H4O2 1.700 ( 0.03 1.613 0.95 1.826 1.07
methylformate C2H4O2 1.770 ( 0.04 1.778 1.00 1.931 1.09
dimethylamine C2H7N 1.010 ( 0.02 0.890 0.88 1.043 1.03
imidazole C3H4N2 3.800 ( 0.4 3.668 0.97 3.773 0.99
pyrazole C3H4N2 2.200 ( 0.01 2.217 1.01 2.316 1.05
pyridine C5H5N 2.215 ( 0.01 2.050 0.93 2.299 1.04
trimethyl phosphate C3H9O4P 3.18c 3.475 1.09 3.723 1.17

AVER 0.94 1.05
SD 0.08 0.06

a Ratios are calculated with respect to experimental values. Data on water were not included in the calculation of the average ratio (AVER)
and the standard deviation (SD). Calculations were performed using MP2(fc)/6-31G(d) geometries except for water, for which experimental
gas-phase geometry was utilized. Experimental dipole moments are from ref 35. The experimental uncertainties are indicated where available.
b Questionable results because of undetermined error sources. c Liquid-phase measurements, which may have large errors because of association
effects.
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respectively, and single-point energy B3LYP calculations
using 1.5 GHz CPU take around 2 and 12 h, respectively.
Approximately 100 such calculations are required for each
conformation of the model compound to generate the
perturbed maps of the ESP. Thus, for larger systems, B3LYP/
cc-pVDZ calculations combined with the appropriate scaling,
can be used for determination of ESP target data.

Based on the data in Tables 1 and 2, the following QM
approach is suggested for determination of the electrostatic
parameters. B3LYP/aug-cc-pVDZ calculations will be used
for the calculation of QM response electrostatic potential
maps. The scale factor 0.724 is applied to the fitted values
of atomic polarizabilities to reflect the reduced polarizability
required for the condensed phase simulations.30 For larger
molecules B3LYP/cc-pVDZ calculations are recommended.
The underestimation of experimental polarizabilities by this
level of theory must be corrected by applying the inverse of
the average ratio of calculated to experimental gas-phase
molecular polarizabilities 1/0.83 to the empirical values of
R(A) as an additional scale factor. Combining this scale factor
with the 0.724 factor yields an overall scaling factor of 0.87
that should be applied to the atomic polarizabilities after the

fitting procedure. In addition, care must be taken when
applying this level of theory due to the presence of outliers
with respect to the calculated molecular polarizabilities (e.g.
fluoromethane, Table 2).

3.2. Reference Values for Atomic Charges and Polar-
izabilities. Ideally, charges and polarizabilities can be
determined via free fitting, as the resultant charges and
polarizabilities are theoretically invariant to the initial guess.
However, free fitting often results in physically unrealistic
values of the charges46 and polarizabilities. For instance, the
polarizability tends to be attracted to one or a few atoms
typically in the central region of a molecule and negative
charges are often obtained for hydrogen atoms attached to
aliphatic carbons from such fitting (see Table 3S of the
Supporting Information). Therefore, the use of restraints is
necessary to obtain chemically meaningful charges and
polarizabilities. The task of careful selection of initial values
for charges and polarizabilities becomes an important step
since in restrained fitting these charges and polarizabilities
are used as reference values in eq 9.

The classical Drude oscillator formalism employs the
concept of atomic polarizability and assigns a corresponding

Table 2. Summary of Experimental and Calculated Molecular Polarizabilities (Å3)a

B3LYP/cc-pVdz B3LYP/aug-cc-pVdz

molecule experimental ahp Miller ratio ratio

water H2O 1.45 1.41 0.78 0.54 1.39 0.96
ethane C2H6 4.47 4.44 3.61 0.81 4.31 0.96
propane C3H8 6.29 6.28 5.27 0.84 6.14 0.98
isobutane C4H10 8.14 8.11 6.94 0.85 7.98 0.98
butane C4H10 8.20 8.11 6.94 0.85 7.99 0.97
pentene-1 C5H10 9.65 9.76 8.42 0.87 9.88 1.02
pentene-2 C5H10 9.84 9.76 8.61 0.87 10.00 1.02
cyclohexane C6H12 11.00 11.01 9.60 0.87 10.68 0.97
benzene C6H6 10.00 10.43 8.57 0.86 10.35 1.04
toluene C7H8 11.80 12.27 10.48 0.89 12.39 1.05
fluoromethane CH3F 2.97 2.52 1.92 0.64 2.53 0.85
fluorobenzene C6H5F 10.30 10.34 8.57 0.83 10.35 1.00
chlorobenzene C6H5Cl 12.25 12.36 10.20 0.83 12.51 1.02
methanol CH4O 3.32 3.25 2.41 0.73 3.19 0.96
ethanol C2H6O 5.11 5.08 4.11 0.80 5.04 0.99
dimethyl ether C2H6O 5.29 5.08 4.14 0.78 5.09 0.96
ethanethiol C2H6S 7.41 7.44 5.70 0.77 7.30 0.99
acetaldehyde C2H4O 4.59 4.53 3.69 0.80 4.58 1.00
acetone C3H6O 6.39 6.37 5.28 0.83 6.37 1.00
acetic acid C2H4O2 5.10 5.17 4.05 0.79 5.14 1.01
methylformate C2H4O2 5.05 5.17 4.06 0.80 5.12 1.01
pyrazole C3H4N2 7.23 7.72 5.76 0.80 7.32 1.01
pyridine C5H5N 9.18 9.73 7.87 0.86 9.55 1.04
adenine C5H5N5 13.10 15.05 11.82 0.90 14.44 1.10
cytosine C4H5N3O 10.30 11.12 9.32 0.90 11.60 1.13
guanine C5H5N5O 13.60 15.68 12.56 0.92 15.40 1.13
thymine C5H6N2O2 11.23 12.11 10.34 0.92 12.44 1.11
trimethyl phosphate C3H9O4P 10.86 10.86 9.27 0.85 11.23 1.03

AVER 0.83 1.01
SD 0.06 0.06

a Ratios are calculated with respect to experimental values. Data on water were not included in the calculation of the average ratio (AVER)
and the standard deviation (SD). Calculations were performed using MP2(fc)/6-31G(d) geometries except for water, for which experimental
gas-phase geometry was utilized. Experimental polarizabilities are from ref 35. When several experimental estimates were available, the most
recent data were used. Calculated empirical polarizabilities are those obtained from atomic component values using the additive ahp scheme
from ref 65.
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unique parameter to individual atoms. Unlike molecular
dipoles and polarizabilities, the atomic charges and polar-
izabilities of atoms in molecules are not well-defined
quantities that can be unambiguously determined. A variety
of different schemes have been proposed to obtain values
of atomic polarizabilities using both QM and experimental
molecular polarizabilities.65-71 They can be categorized into
element, group, bond, and hybrid polarizability schemes.65

These methods can be also classified as additive, where the
molecular polarizability is considered as a sum of atomic
contributions, and nonadditive, which usually rely on the
iterative solution of nonlinear equations to obtain molecular
polarizability values. Nonadditive atomic polarizability schemes
of Applequist66 and Thole67 have been commonly used to
obtain polarizabilities in polarizable force fields employing
point dipole induction models.21,25,72 However, the atomic
polarizability values from these as well as the majority of
other nonadditive schemes can be considered as parameters
of that model and, therefore, may be inappropriate for use
in other polarization models. To the best of our knowledge,
no atomic polarizability values for molecules other than water
have been suggested for the classical Drude oscillator model.

Based on the classical Drude oscillator formalism, the
atomic polarizability, R(A), of atom A is theoretically
independent of the polarizability of the other atoms. How-
ever, in practice, atomic polarizabilities will be interdepen-
dent. Such interdependence is systematically minimized in

force fields through assignment of atom types, which are
expected to show transferability within a given class of
chemical compounds. To facilitate transferability, the initial
guess for atomic polarizability should also be taken from an
additive polarizability scheme. The atomic hybrid polariz-
ability (ahp) scheme of Miller65 is a good example of such
a scheme, and, after some modifications, it has been used in
this work to provide an initial guess of atomic polarizabilities.

In the original Miller scheme the atomic polarizability
contributions were obtained from least-squares fitting to
experimental gas-phase molecular polarizabilities for ap-
proximately 400 organic compounds.65 In addition, the Miller
atomic hybrid polarizabilitiesRA(ahp) depend not only on
the identity but also the hybridization state of a particular
atom, which is similar to an empirical force field atom type
concept. According to the Miller scheme, molecular polar-
izabilities are obtained by summing up atomic hybrid
polarizabilities RA(ahp).65 In most cases the sum of ahp
polarizabilities is very close to experimental values of
molecular polarizabilities (Table 2). Values ofRA(ahp) are
available for most atomic hybrids which are encountered in
biological compounds. Besides, the additivity of the model
allows summing up atomic polarizabilities for functional
groups and easy adjustment ofRA(ahp) values by applying
scale factors (see below). Thus, theRA(ahp) values were used
as the initial estimates for atomic polarizabilities in the
electrostatic parameter fitting procedure. It should be noted
that molecular polarizability in the classical Drude oscillator
model is not the additive sum of the atomic polarizabilities.
However,RA(ahp) values can still be used as an initial guess
and then adjusted during the fitting procedure.

Since no polarizability is assigned to hydrogens in the
current model, the initial guess for atomic polarizabilities
was constructed by adding ahp polarizabilities of the heavy
atoms and their covalently bound hydrogen atoms, thereby
constituting the “united atom” approximation for atomic
polarizability. If B3LYP/cc-pVDZ calculations are used for
the calculation of the response ESP maps, these “united
atom” atomic polarizabilities have to be scaled by the factor
of 0.83 introduced above. Thus, their sum will reproduce
the molecular polarizability at the B3LYP/cc-pVDZ level
of theory, which will avoid biasing during the restrained
fitting. Following the fitting procedure the scale factors
described above are applied. No initial atomic polarizability
scaling is required if the B3LYP/aug-cc-pVDZ level of
theory is employed. Both unscaled and scaled atomic
polarizabilities for biologically important atom types are
given in Table 3.

A few small adjustments to Miller’s polarizabilities were
introduced to improve agreement with the QM results. A
new hybrid atom type for anionic oxygen (OTA) was
introduced to reflect the substantially higher electronegativity
of anions and was derived based on the polarizability of the
acetate anion. The atomic polarizability of the P atom was
substantially increased to obtain a better estimate for different
phosphate species, especially those with methyl groups
attached to ester oxygen atoms. The comparison between
B3LYP/aug-cc-pVDZ calculated and the sum of corrected
ahp values from Table 3 for a few relevant compounds are

Table 3. Initial Values of Atomic Polarizabilities

atom (group) polarizabilities (Å3)

symbol Millera unscaledb scaledc

CH3(sp3) CTE+3H 2.222 1.844
CH2(sp3) CTE+2H 1.835 1.523
CH(sp3) CTE+H 1.448 1.202
C(sp2) CTR 1.352 1.122
CH(sp2) CTR+H 1.739 1.443
CH2(sp2) CTR+2H 2.126 1.765
C(sp2, br) CBR 1.896 1.574
-OH OTE+H 1.024 0.850
-O- OTE 0.637 0.529
)O OTR4 0.569 0.472
-O(-) OTAd 0.858 0.712
NH2(sp3) NTE+2H 1.738 1.443
NH(sp3) NTE+H 1.351 1.121
N(sp3) NTE 0.964 0.800
NH2(sp2) NPI2+2H 1.864 1.547
NH(sp2) NPI2+H 1.477 1.226
N:(sp2) NTR2 1.030 0.855
P PTE 2.063e 1.712
a Hybrid names used by Miller65 are given in the second column

along with the number of attached hydrogen atoms. b Unscaled united
atom values of ahp polarizabilities can be used as reference values
in the charge fitting to the B3LYP/aug-cc-pVDZ ESP potentials.
c United atom values of ahp polarizabilities were scaled by the factor
0.83 reflecting the underestimation of experimental gas-phase po-
larizabilities by B3LYP/cc-pVDZ calculations. d The anionic oxygen
atom type (OTA) was not present in the original Miller’s ahp scheme
and was added to reflect its higher polarizability compared to the ester
oxygen (OTE). e The atomic polarizability of phosphorus atom was
substantially changed from its original value in Miller’s ahp scheme
(1.538) to obtain a better estimate of the B3LYP molecular polariz-
abilities for phosphates. See details in the text.
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given in Table 1S of the Supporting Information. Overall,
the satisfactory agreement between QM and empirical values
of molecular polarizabilities was obtained for most com-
pounds. It should be emphasized that these values represent
initial estimates of atomic polarizability values, which are
then adjusted in the fitting procedure. Since in the classical
Drude oscillator model the atomic polarizability is directly
related to a partial charge assigned to the Drude particle,
the atomic and Drude charges are determined in one step
through charge fitting to the series of perturbed ESP maps
obtained from QM calculations.

It is also necessary to have a good choice of reference
atomic charges used in eq 9. Three different initial guesses
were considered, namely CHARMM27,54 NBO,73 and Mul-
liken74 charges. Initial guesses for the polarizabilities were
kept the same in all three cases. In general, it was found
that the reference charge selection affects the final atomic
charges but not the polarizability values. An example for
such calculations for the cytosine base is given in Table 2S
of the Supporting Information. It was also found that some
molecular properties, such as residue-water interaction ener-
gies, were not very sensitive to the reference atomic charge
scheme chosen (see also Table 2S). In addition, NBO and
Mulliken atomic charges as initial guesses have some
drawbacks. For instance, NBO charges on aliphatic hydro-
gens are often very large (0.20-0.30) even in nonpolar
compounds such as alkanes. This results in the undesirable
overpolarization of the C-H bonds. Mulliken charge as-
signment has a variety of shortcomings including a strong
dependence on the basis set and unrealistic population
assignment in the presence of diffuse and polarization
functions, among others.75 Moreover, charges obtained from
QM models are conformation dependent, thereby complicat-
ing selection of the initial guesses. Therefore, the CHARMM27
charges were selected as the initial guess. This choice
facilitates transfer of already existing internal and Lennard-
Jones CHARMM27 force field parameters to the polarizable
model, although optimization of these parameters will be
necessary due to the new charge distribution and inclusion
of explicit polarization. A disadvantage of using CHARMM27
charges as the initial guess is that they are limited to
molecules for which the force field parametrization has been
performed. Currently there is no simple scheme to derive
these charges for new molecular residues although fitting
procedures based on electronegativity equalization schemes5

may be useful.

3.3. Atomic Charge and Polarizability Derivation for
Model Compounds.The methodology described above has
been applied for the derivation of the electrostatic parameters
for the model compounds shown in Figure 3, which comprise
the most important functional moieties of nucleic acids.
Details of the fitting procedure will be discussed for the cyto-
sine base. The geometry was optimized at the MP2/6-31G-
(d) level of theory with the amino group geometry con-
strained to be planar. Three Connolly surfaces for grid points
and two surfaces for perturbation charges were generated
(see Figure 4). The total number of grid points and per-
turbation ions was 1327 and 57, respectively. Surface
parameters and the number of points placed on each surface

are shown in Table 4. In total, 57 QM ESP maps were
calculated, one for each placement of the perturbation charge,
at the B3LYP/aug-cc-pVDZ level of theory. For other model
compounds a similar strategy for the grid generation has been
used. Reference partial atomic charges and atomic polariz-
abilities for the fitting procedure are shown in Table 4S of
the Supporting Information. Fitting was performed under the
RESP parabolic restraint with a 10-5 Å-2 weighting factor.
Charges and polarizabilities were restrained separately to
their corresponding initial values. The restraint was combined
with a flat well potential with a half-width of 0.1e centered
at the initial charge value. The restrained ESP fitting
produced a final RMS error of 6.8‚10-4 e/Å with respect to
the B3LYP potential, which is close to the RMS error of
3.9‚10-4 e/Å for the unrestrained fitting. The resultant atomic
polarizabilities were then scaled by factor 0.724 to reflect
reduced polarizability expected for the condensed phase (see
above). This was followed by scaling the atomic charges to
reproduce the B3LYP/aug-cc-pVZD gas-phase dipole mo-
ment. Final optimized partial atomic charges and atomic
polarizabilities are shown in Table 4S of the Supporting
Information for cytosine as well as other model compounds.
In general, the fitted values of atomic charges decreased in

Figure 3. Model compounds used for the preliminary
parameter development of the Drude polarizable CHARMM
force field for nucleic acids.
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magnitude with respect to initial values. This is expected as
polarization was taken into account implicitly in the
CHARMM27 charges, whereas explicit polarization in the
Drude polarizable CHARMM force field naturally results
in decreased values of the atomic charge values in most cases
(see Table 4S). In the fitting procedure redistribution of the
polarizability also takes place. As a rule, the polarizability
tends to accumulate on atoms that are located near the center
of the molecules, which is mainly an artifact of the fitting
procedure resulting from the inadequate sampling of the
electrostatic potential for the “buried” central atom(s). The
use of restraints allows a substantial reduction of this effect
(see Table 3S).

In situations where model compounds have several stable
conformers (e.g. dimethyl phosphate or ethanol), the grid
generation and QM ESP calculations has been performed
for the most relevant (i.e. the lowest-energy) nonequivalent
conformers. For instance, gg and tg conformers have been
used for the dimethyl phosphate electrostatic parameter
derivation. The tt conformer of the DMP anion has not been
taken into consideration since it lies substantially higher in
energy (∼3 kcal/mol compared to gg), and the corresponding
conformation is not populated in nucleic acids. Then the
fitting procedure was performed by simultaneously including
the target ESP data for both conformers resulting in one set
of charges and polarizabilities. The procedure tends to
decrease the quality of the fit (i.e. increases the RMSE) but
minimizes bias in electrostatic parameters toward one
conformer.

The quality of the derived set of atomic charges and
polarizabilities can be evaluated by the ability of the Drude
polarizable model to reproduce the gas-phase dipole and
polarizability. The corresponding data are presented in Table
5. The atomic charges and polarizabilities derived from the
fitting procedure reproduce the reference experimental (if
available) or QM gas-phase dipole moments within 3% for
nucleic bases and tetrahydrofuran (THF) and within 10%
for the stable conformers of the dimethyl phosphate anion
(DMP) and ethanol, for which multiple conformers were used
for fitting. The scaling of atomic polarizabilities results in
the increase in the molecular dipole moments for the model
compounds, which is corrected by the adjustment of partial
atomic charges for all compounds except DMP. Since DMP
is an ion the direct uniform charge scaling is not applicable.
However the reproduction of the gas-phase dipole moment
for DMP was considered to be not essential as the dipole
moment of ionic species is undetermined, i.e., depends on
the molecular orientation.

Ideally, the experimental and/or high-level QM gas-phase
dipole moment values should be reproduced in Drude
calculations for all neutral model compounds through the
application of the atomic charge fitting. However, since the
molecular dipole moment is also a function of the molecular
geometry it may be necessary to perform fitting in an iterative
fashion following adjustment of Lennard-Jones and internal
parameters. In general, it should be noticed that the polariz-
able Drude model better reproduces gas-phase molecular
dipole moments than additive CHARMM, which often
overestimate them (Table 5) in order to reproduce condensed-
phase properties of model compounds.

Concerning the molecular polarizabilities, those from the
Drude model are underestimated by ca. 1-4% for nucleic
bases,∼5% for ethanol and THF, and ca.∼14% for DMP
compared to reference QM B3LYP/aug-cc-pVDZ data (Table
5). These differences may be a consequence of the different
approaches used for determination of the QM and classical
molecular polarizabilities as well as an artifact of the fitting
procedure, which does not allow proper sampling for
“buried” atoms. Future work will address the causes of these
differences. However, the relative magnitudes of experimen-
tal and QM molecular polarizabilities are well reproduced
by Drude polarizable CHARMM calculations.

Figure 4. Electrostatic potential grid created based on Connolly surfaces around the cytosine base (A) and placement of
perturbation charges around this molecule (B). For visualization purposes only grid 1 and grid 2 Connolly surfaces are displayed
(see Table 4 for surface parameters). Perturbation charges are placed along chemical bonds (green spheres), around the N
lone pair (white spheres), and in gaps between other charges (brown spheres) on the corresponding Connolly surfaces. The
surfaces are not displayed in part B.

Table 4. Parameters Used for the Grid Point and
Perturbation Charge Generation for the Cytosine Base

Connolly surface
size factor,

fa
density factor,

d
# of

points

perturbation charges 1 2.2 1.1 46
grid 1 3.0 1.3 505
perturbation charges 2 4.0 0.1 11
grid 2 5.0 0.6 564
grid 3 6.0 0.2 258

a Size factors (multiplication constants) multiplied by the van der
Waals radii of corresponding atoms (1.2 Å for H, 1.5 Å for C, 1.4 Å
for N, 1.35 Å for O) define the distance from that atom to the
generated Connolly surface. Density factors determine the relative
density of points on a particular Connolly surface.
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3.4. Polarizable Condensed-Phase Molecular Dynamics
Simulation of DNA. The ability to perform condensed-phase
simulations of biologically relevant molecular systems is
the ultimate goal of any macromolecular empirical force
field. As a proof of concept of the Drude model and the
presented electrostatic parameter derivation procedure, a
MD simulation of the DNA duplex GAGTACTC in a
SWM4-DP water box, including sodium counterions, was
performed. Atomic charges and polarizabilities (Table 4S
of the Supporting Information) of the model compounds
shown in Figure 3 have been used. The values of atomic
charges for terminal atoms had to be adjusted upon creating
the covalent bonds in an oligonucleotide. For example, in
pyrimidine bases the charge of the hydrogen H1 was summed
into the N1 charge. The experimental polarizability of the
Na+ ion (0.157 Å3)76 scaled by 0.724 (see above) has been
used.

Lennard-Jones (LJ) and bonded parameters for model
compounds were also required for the simulation. Preliminary
optimization of LJ parameters was performed to reproduce
minimum interaction energies and geometries of model
compounds with water and for base pairs. High-level ab initio
LMP2/cc-pVQZ//MP2/6-31G(d) calculations for nucleic
bases as well as THF and LMP2/aug-cc-pVTZ//MP2/
6-31+G(d) calculations for the DMP were used as reference
data.77 In both the QM and empirical calculations the
respective monomer geometries were fixed. The QM interac-
tion distances were determined from the constrained MP2

optimization, and then interaction energies were calculated
at the LMP2 level with a larger and more flexible basis set.
In CHARMM the corresponding hydrogen bonding distances
were sampled at a resolution of 0.01 Å, and the minimum
interaction energies were obtained. The positions of Drude
particles were self-consistently adjusted at every step of the
potential energy scan. The hydrogen bond angles have been
also sampled for some orientations of nucleic acid bases with
water molecule, where it acts as a hydrogen bond donor to
the carbonyl oxygen of the base.54 The LJ parameters for
model compounds were adjusted to minimize the difference
between QM and CHARMM interaction energies and to
reduce RMS deviation for both distances and energies across
different complex orientations. Comparison of the present
results with available CHARMM27 additive force field data54

was also performed. The final values of the minimized base
pair interaction energies are summarized in Table 5S of the
Supporting Information, and those for the nucleic acid bases,
DMP and THF with water are given in Tables 6S and 7S of
the Supporting Information. For the nucleic acid bases the
LJ parameter optimization was performed mainly based on
the ab initio LMP2/cc-pVQZ//MP2/6-31G(d) base pairing
interaction energies. The optimization of Lennard-Jones
parameters for the DMP and THF was performed based on
the LMP2//MP2 data on interactions with water.

Overall, the Drude model reproduces the QM base-base
and model compound-water interactions at a level similar
to that of CHARMM27. Base-base interactions are generally

Table 5. Summary of Calculated Molecular Dipole Moments and Polarizabilities for a Set of Model Compounds

DRUDE

modela experiment B3LYP/aug-cc-pVDZ B3LYP/cc-pVDZ CHARMM27b unscaledc scaledd

Molecular Dipole Moments (Debye)
ADE 2.43 2.35 2.94 2.43 2.25
CYT 6.72 6.24 7.88 6.70 6.92
GUA 6.97 6.84 7.61 6.96 6.81
THY 4.54 4.11 4.51 4.51 4.65
THF 1.75 1.87 1.70 2.34 1.91 1.72
DMP gg 5.43 4.88 e 5.42 e
DMP gt 4.82 4.31 e 4.75 e
DMP tt 2.70 2.35 e 2.43 e
ETOH t 1.44 1.60 1.48 2.36 1.70 1.68
ETOH g 1.68 1.73 1.54 2.40 1.81 1.73

Isotropic Molecular Polarizability (Å3)
ADE 13.10 14.44 11.82 13.98 10.36
CYT 10.30 11.60 9.32 11.19 8.16
GUA 13.60 15.40 12.56 15.29 11.09
THY 11.23 12.44 10.34 12.09 8.72
THF 7.81 6.76 7.44 5.70
DMP gg 10.83 8.03 9.26 6.63
DMP gt 10.86 8.07 9.27 6.64
DMP tt 10.91 8.13 9.38 6.68
ETOH t 5.11 5.04 4.11 4.76 3.48
ETOH g 5.04 4.10 4.79 3.48
a ADE - adenine, CYT - cytosine, GUA - guanine, THY - thymine, THF - tetrahydrofuran, DMP - dimethyl phosphate anion, ETOH -

ethanol. b CHARMM27 calculations were performed using the standard additive CHARMM27 force field for nucleic acids54 and fully optimized
geometry of the model compounds. c The fitted partial atomic charges and atomic polarizabilities were not scaled. MP2 optimized geometry was
used, and only positions of Drude particles were optimized to make a direct assessment of the quality of the fit to the QM ESP. d The fitted
atomic polarizabilities were scaled by a factor of 0.724. The full geometry optimization of model compounds was performed for molecular dipole
and polarizability calculations. e Molecular dipole of ionic species depends on the molecular orientation and therefore cannot be compared
directly for DMP using the QM and CHARMM optimized geometries.
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improved in the new model (Table 5S of the Supporting
Information), although significant differences (e.g. the GG1
and GG2 interactions) that occur with CHARMM27 are still
present. With the base-water interaction energies (Table 6S)
the Drude model yields improved results for cytosine, while
CHARMM27 is better for adenine, guanine, and thymine.
Notably, the most significant improvement by the Drude
model versus CHARMM27 is seen with dimethyl phosphate
(Table 7S). This improvement includes the relative energies
of the different interaction orientations and suggests that
some of the largest gains in accuracy associated with the
use of polarizable models may be expected with charged
species. Thus, preliminary optimization of LJ parameters
combined with electrostatic parameters determined using the
methodology presented here yield a model that reproduces
interaction energies to a level similar to CHARMM27 as
judged by the reproduction of ab initio QM data. It is
anticipated that more rigorous optimization of the LJ
parameters, including the application of parameters obtained
from condensed phase studies of small model compounds,
will yield improved results for the studied interactions.

Selected internal parameters were also optimized. Equi-
librium bond length and angle values were adjusted to repro-
duce average values of the bases targeting a survey of nucleic
acid crystal structures from the NDB.78 Force constants were
adjusted to reproduce MP2/6-31G(d) frequencies scaled by
0.9434.79 Torsional parameters for the C-O-P-O dihedral
angles were adjusted to reproduce MP2/6-31+G(d) confor-
mational energies for the DMP- ion.80

Using this zero-generation polarizable model a MD
simulation of the GAGTACTC DNA duplex in a box of
SWM4-DP water box with sodium counterions was run for
1 ns. The results of this simulation were compared with a
previously published MD simulation of this DNA sequence
using the additive CHARMM27 force field and the TIP3P
water model.64 RMSD values for non-hydrogen atoms of the
six central residues of the DNA duplex were calculated with
respect to canonical A and B DNA structures for this duplex
over the course of the simulation. These data are shown in
Figure 5 and demonstrate that DNA structures from both

Drude polarizable and CHARMM27 additive force field
simulations remain closer to the B form versus the A form
of DNA. More specific information may be obtained from
the analysis of the base pairing interactions e.g. through
monitoring of the N1‚‚‚N3 distance between Watson-Crick
bases. The average values over the course of the simulation
are presented in Table 8S of the Supporting Information.
These data indicate that the current Drude polarizable model
gives reasonable agreement with the additive CHARMM27
force field. However, larger fluctuations of the N1‚‚‚N3
distances for most base pairs from the Drude polarizable
DNA simulation occur. Another test of the validity of the
performed simulation is the analysis of the backbone dihedral
parameters. Probability distributions of the backbone dihedral
angles are presented in Figure 1S of the Supporting Informa-
tion. The plots indicate that reasonable backbone dihedral
angle probability distributions are obtained, being similar to
those from the CHARMM27 MD simulation as well as data
from a survey of the nucleic acid data bank (NDB)78 in most
cases. However, for some dihedrals there are noticeable
differences in the relative conformer populations. The
observed differences in the N1‚‚‚N3 distances and in the
dihedral distributions emphasize potential differences in
molecular properties associated with the polarizable versus
the additive CHARMM27 model. However, such differences
also indicate the need for careful force field parametrization
to be performed in order to properly implement a classical
Drude based polarizable force field; such efforts are ongoing
in our laboratory.

Importantly, the MD simulation was run in a reasonable
amount of time. For instance, 50 ps of the extended
Lagrangian DNA simulation took 23 CPU h to run on a 3
GHz Pentium IV computer. For comparison, the additive
CHARMM27 force field simulation for the same system
consumed approximately 5 h of CPUtime. It should be noted
that a larger time step of 2 fs was used in the CHARMM27
simulation, whereas a 1 fs time step was used for the
extended Lagrangian simulation and that the TIP3P water
model contains only 3 particles versus 5 particles in the
SWM4-DP model.

Figure 5. Root-mean-square deviation (RMSD) of heavy atom for six central residues of the GAGTACTC DNA duplex with
respect to crystal structures of the A and B forms of DNA (dashed and solid lines) during the course of the MD simulation.
RMSD from simulations using CHARMM27 pairwise additive force field and TIP3P water model (blue lines) and Drude polarizable
CHARMM force field with SWM4-DP water model (red lines) are presented.
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Thus, applying the presented electrostatic parameter
optimization methodology along with preliminary optimiza-
tion of selected internal and LJ parameters produces a
polarizable model of DNA that yields results comparable to
those from the additive CHARMM27 nucleic acid force field.
The final solvated DNA structure after 1000 ps is shown in
Figure 6. In addition, the simulation system remained stable
over the course of the trajectory as evidenced by a lack of
significant drift in the molecular volume and potential energy
of the system (not shown). These results indicate the
applicability of the developed method for derivation of the
electrostatic parameters and the resulting classical Drude
based model of electronic polarizability for MD simulation
studies of biological macromolecules in the condensed phase.

4. Conclusions
A general procedure for the determination of the electrostatic
parameters for the classical Drude oscillator polarizable
model, the partial atomic charges and atomic polarizabilities,
is presented. This task is performed through fitting to a series
of QM electrostatic potentials for a test molecule obtained
in the presence of perturbation charges. Consequently, the
partial atomic and Drude particle charges, where the latter
are responsible for the atomic polarizabilities, are determined
simultaneously in a single step. The QM level of theory for
the electrostatic parameter fitting was determined via com-
parison of dipole moments and molecular polarizabilities for
a variety of small organic molecules. The B3LYP/aug-cc-
pVDZ level was selected based on this comparison, although
the computationally less expensive B3LYP/cc-pVDZ level
may be used for larger molecules with the appropriate scaling
factors. Special emphasis was placed on the creation of the
grid required for the electrostatic potential and placement

of the perturbation charges. Versus the commonly used cubic
grid, an approach based on the placement of grid points on
a predetermined series of nonintersecting Connolly surfaces
was developed. This approach reduces of the number of grid
points by optimizing their placement around the test mol-
ecules. Perturbation charges were placed along chemical
bonds, lone pairs, and in gaps between previous placed
charges to provide equal coverage of the corresponding
Connolly surfaces.

Consistent with previous work,46 it was found that
restraints were needed during the fitting procedure to avoid
unphysical atomic charges and polarizabilities. Thus, generic
reference values for the atomic charges and polarizabilities
become important. Atomic charges from the CHARMM27
additive force field and atomic polarizabilities obtained using
the atomic hybrid polarizability scheme of Miller65 were
identified as suitable reference values. However, it was
necessary to adjust Miller’s ahp atomic polarizability values
to take into account the united-atom polarizability model used
in this study, i.e., polarizabilities of H atoms are added to
that of the corresponding heavy atom to which they are
bonded. Furthermore, fitted values of atomic polarizabilities
were scaled to reflect the reduced polarization which appears
to take place in the condensed phase.30,36-41 Studies on the
SWM4-DP30 and other polarizable models36,37 have shown
such scaling to be necessary to reproduce condensed-phase
properties. In this study we used the same scaling factor as
was used for the SWM4-DP water model. Studies are
underway in our laboratory to determine if the scale factor
based on the water molecule (0.724) is appropriate for other
small organic molecules. These tests will involve the ability
of the scaling approach to reproduce pure solvent properties,
including dielectric constants and free energies of solvation.
Use of scaling of the polarizabilities required readjustment
of the partial atomic charges to ensure that gas-phase dipole
moments were reproduced. The quality of the fits was
evaluated via comparison of calculated molecular dipole
moments and polarizabilities with the available gas-phase
experimental and QM values.

The developed scheme for the determination of atomic
charges and polarizabilities has been tested on a set of small
molecules representing functional moieties of nucleic acids.
All other parameters have been taken from the all-atom
additive CHARMM27 force field for nucleic acids. Selected
Lennard-Jones parameters were adjusted to reproduce QM
data on interactions of model compounds with water as well
as nucleic acid base pairing interactions. Selected internal
parameters were optimized to reproduce experimental and
QM data on molecular geometries, vibrational frequencies,
and rotational barriers. The resulting zero-generation force
field has been successfully applied in a 1 nspolarizable MD
simulation of a DNA octamer in aqueous solution. This
simulation validates the feasibility of the developed meth-
odology for the determination of partial atomic charges and
polarizabilities as well as the use of the Drude oscillator
model to include electronic polarizability in biomolecular
systems. Future efforts will apply the methodology developed
in this work, along with an iterative parameter optimization
scheme that includes the internal and LJ parameters, to

Figure 6. GAGTACTC duplex DNA molecule. Final structure
from the 1000 ps Drude polarizable extended Lagrangian
molecular dynamics simulation in a box of SWM4-DP water
with sodium counterions.
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develop a nonadditive empirical force field for molecules
of biological and pharmacological interest.
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Abstract: A methodology for large scale molecular dynamics simulation of a solvated polarizable

protein, using a combination of permanent and inducible point dipoles with fluctuating and fixed

charges, is discussed and applied to the simulation of water solvated bovine pancreatic trypsin

inhibitor (BPTI). The electrostatic forces are evaluated using a generalized form of the P3M

Ewald method which includes point dipoles in addition to point charge sites. The electrostatic

configuration is propagated along with the nuclei during the course of the simulation using an

extended Lagrangian formalism. For the system size studied, 20000 atoms, this method gives

only a marginal computational overhead relative to nonpolarizable potential models (1.23-1.45)

per time step of simulation. The models employ a newly developed polarizable dipole force

field for the protein1 with two commonly used water models TIP4P-FQ and RPOL. Performed

at constant energy and constant volume (NVE) using the velocity Verlet algorithm, the simulations

show excellent energy conservation and run stably for their 2 ns duration. To characterize the

accuracy of the solvation models the protein structure is analyzed. The simulated structures

remain within 1 Å of the experimental crystal structure for the duration of the simulation in line

with the nonpolarizable OPLS-AA model.

I. Introduction
The goal in force field development for biomolecular systems
is to retain chemical accuracy while taking advantage of
computational expediency by employing the simplest po-
tential function. Expressing the electrostatic potential energy
using a system of fixed point charges interacting via
Coulomb’s law is certainly simple and is the approach taken
for the most popular models used in biomolecular force field
simulation.2-4 However, such nonpolarizable force fields do
not reflect the dependence of a molecules electronic structure
on its environment. This dependency is clearly manifest in
water where the magnitude of the average dipole moment is
approximately 40% larger in the liquid compared to the gas
phase. For homogeneous systems, such as neat fluids, the
exclusion of polarization to model the electrostatic energy

may be sufficient for some purposes. However, the electro-
static environments found in solvated biomolecules range
from nonpolar near hydrophobic residues to highly polar in
the vicinity of hydrophilic and charged residues to a nearly
bulk water like environment far from the protein. A rescaling
of the partial charges to reflect the mean field response is
one way to deal with the average effects of condensed phase
environments; however, inhomogeneous systems with spa-
tially varying fields necessitate the explicit inclusion of
polarization to properly treat the electrostatic potential.

How best to incorporate polarization in a simple manner
is an ongoing quest. The distributed polarizability analysis
of Stone5 is an approach that incorporates highly distributed
inducible sites occupied by high order point multipoles. The
main drawback to such an approach is the additional
complexity of the potential function and the corresponding
increase in computational cost. Recently the particle mesh
Ewald method has been extended to include multipole

* Corresponding author phone: (212)854-2186; fax: (212)854-
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interactions up to hexadecapole-hexadecapole.6 Although
providing a considerable improvement in efficiency relative
to regular multipole Ewald,7 the algorithm is still a factor of
8.5 slower than simply using point charges alone.

The most common approach to including polarization in
a simple force field describes the electrostatic configuration
using a system of fixed point charges/dipoles and inducible
dipoles.8-18 Another approach, referred to as fluctuating
charges (FQ), uses variable charge magnitudes to model
polarization and has been growing in popularity due to the
ease of its implementation and related computational
speed.19-24 Recent successful efforts have led to parametrized
models for small molecules that use a combination of fixed
charges/dipoles, fluctuating charges, and inducible dipoles
using techniques for deriving electrostatic parameters from
ab initio electronic structure calculations.25,26Using this QM
technique, Kaminski et al.1 have now developed a complete
polarizable dipole model for proteins that has shown good
accuracy in gas-phase experiments.

Before the Kaminski model can be used as a predictive
tool, it will be necessary to validate and refine the model
for simulation in liquid water. To do so it is critical to
develop an efficient formalism for simulating polarizable
condensed phase biomolecular systems. It is the long range
electrostatic interactions in biomolecular systems which make
these simulations computationally intensive. To minimize
surface effects we use periodic boundary conditions. Spheri-
cal or minimum image truncation of the long-range electro-
static forces is a method that reduces the computational cost
of the simulation but gives rise to unphysical effects.27,28The
Ewald sum29 provides a tractable solution to the accurate
evaluation of the electrostatic forces but has a computational
complexity ofO(N3/2). For system sizes between 104 < N <
105, that are necessary to simulate solvated proteins, mesh
based Ewald methods such as SPME30 and P3M Ewald31-33

have been shown to be particularly effective. These algo-
rithms have favorableO(NlogN) scaling and lead to ap-
proximately an order of magnitude improvement in the
computational cost of evaluating the electrostatic forces for
systems the size of 20 000 atoms (the relative merits and
similarities of the SPME vs P3M Ewald methodology have
been discussed at length elsewhere32,34). Further computa-
tional gains may be realized by using multiple time scale
integration algorithms that allow for the evaluation of the
expensive long range electrostatic interactions less frequently
than in standard Verlet integration schemes.33,35 The result
of these advances is a formalism for atom-detail nonpolar-
izable potential functions that allows for the MD simulation
of solvated proteins on nanosecond time scales using
reasonable computational resources.

Explicit inclusion of polarizability in a simple potential
function adds additional computational complexity which
must be solved in order to realize size scales that are currently
accessible to nonpolarizable molecular models. The ad-
ditional computational burden is 3-fold: (1) Use of inducible
point dipole sites in addition to fixed or variable charges
requires additional charge-dipole and dipole-dipole interac-
tions. (2) Resolving the electrostatic configuration and
therefore the field at each molecular dynamics time step

necessitates the self-consistent solution to a system of
coupled linear equations. (3) A transparent application of a
multiple time scale algorithm in a fashion similar to that
applied to nonpolarizable potential models is not straight-
forward. Recent developments have laid the groundwork for
efficient large scale simulations of polarizable systems. In
this article we focus on addressing the first two points in
constructing an efficient simulation methodology. Work on
the problem of combining multiple time scale integration
schemes with polarizable potential functions is ongoing in
our lab.

In a following study66 we will be interested in studying
the dynamic properties of water solvent in the vicinity of
the protein. To ensure an accurate evaluation of these
properties our simulations are conducted at constant energy
and constant volume free of artificial perturbations necessary
to simulate in the isothermal/isobaric ensemble.57,58

The article is organized as follows. In section 2.1 we
introduce the polarizable models based on the inducible
dipole model of Kaminski et al.1 for the protein. We choose
two solvent models for comparison, a fluctuating charge
water model, TIP4P-FQ,19 and an inducible dipole water
model, RPOL.8 To efficiently evaluate the electrostatic
potential for a system of charges and dipoles we have
generalized the P3M Ewald method in a fashion similar to
the methodology developed by Toukmaji et al.36 To ef-
ficiently resolve the electrostatic configuration and therefore
the nuclear forces at each molecular dynamics time step, an
extended Lagrangian method19,37combined with the general-
ized P3M Ewald method is used to dynamically propagate
the electrostatic variables during the course of the simulation.
This is discussed in sections 2.2.1 and 2.2.2. In section 3
we apply this technology to the simulation of bovine
pancreatic trypsin inhibitor in water. The computational
complexity and simulation accuracy is discussed in sections
3.2.1 and 3.2.2. As an initial study of the quality of the
polarizable protein model and the proposed solvation models,
the structure of the protein is compared with the experimental
structures in section 3.2.3.

II. Methodology
A. Model. The approach taken to include polarization in the
force fields applied in this study replaces the usual fixed
point charge representation for the electrostatic energy with
a combination of fixed and variable point charges and dipoles
that respond to perturbations in the electric field according
to a parametrized potential energy. The charges and dipoles
are located relative to the atomic positions of the molecules,
either coincident with the atom position or on off-atom virtual
sites.

Adding inducible point dipoles to a system of fixed charges
is the most common method for introducing explicit polar-
izability into a molecular force field. The energy for an
induced dipole moment on sitei is

whereγi and the component of the polarizability tensor of
the dipole site,Ri, are treated as fitting parameters. The

Eµi
) γi‚µi + 1

2
µi‚Ri

-1‚µi (1)
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parameterγi is a means of introducing a permanent dipole
moment on the isolated sitei. Through a simple transforma-
tion eq 1 can be expressed as the familiar self-energy of the
induced dipole relative to the isolated site.

The fluctuating charge model19 introduces variable charges
that respond to fluctuations in the electrostatic potential
according to the principle of electronegativity equalization.
By this principle the charges will distribute so that the
electronegativity on each variable charge site is the same
subject to appropriate charge constraints.19 The energy of
creating a fluctuating charge is

where the Mulliken electronegativity,øi andJi
0 are treated

as fitting parameters. The parameterJi
0 is twice the hardness

of the electronegativity of the isolated site.19

The electrostatic potential energy in an interacting system
relative to a system of isolated molecules can be expressed
as

whereEgp is the system energy in the gas phase andEelec is
the electrostatic energy resulting from the interaction of
different sites:

If the electrostatic sites are well separated, the coupling
terms can be expressed as Coulomb interactions,J(rij) )
1/(rij), Sij ) r ij /(rij

3), and the tensorT ij ) 1/(rij
3) - 3r ij r ij /(rij

5).
At short distances the point multipole approximation for the
electron charge distribution breaks down, and the above
Coulombic potential diverges. Where deemed necessary
screening functions are used at close intermolecular site
distances.26 Intramolecular electrostatic interaction between
neighbors (1,2 interactions) and one neighbor removed (1,3)
are omitted in the model for the polarizable protein. For
water, the (1,2) and (1,3) distances are fixed, and the
Coulombic interactions are treated as either additional fitted
electrostatic parameters19 or omitted.8

The equilibrium charge/dipole configuration is determined
at each set of nuclear coordinates by minimizing the potential
energy with respect to the electrostatic variables subject to
a charge conservation constraint:

In the models presented in this report the charges are
constrained to give charge neutral molecules

whereNâ is the number of charges in moleculeâ. One can
equivalently express the charge constraint implicitly by
transforming to a set of generalized charge coordinates.21

The polarizable model used for the polypeptide (PFF)
comes from the work of Kaminski et al.1 The model places
fixed partial charges on all atomic positions and on massless
virtual sites representing the lone pairs of the oxygen and
sulfur atoms. The electrostatic parameters are fit from gas-
phase electronic structure calculations25 using density-
functional theory (DFT) with the B3LYP method38,39 and
the cc-pVTZ(-f) basis set. The choice of basis set, which
does not include diffuse functions, is based on evidence that
including contributions from such functions in gas-phase
DFT calculations results in an overpolarization of the
parametrized model in the condensed phase.26,40,41The effect
is likely a result of an energetic cost, hindering polarization,
that results from Pauli repulsion between neighboring
molecules in the condensed phase.42 The polarizabilities of
the atomic sites are parametrized by a series of electrostatic
perturbations, using dipolar probes applied to the target
molecule. The resulting change in the electrostatic potential
is measured at a set of grid points outside the van der Waals
surface of the molecule. Polarizabilities (Ri) are chosen to
minimize deviations from the DFT calculation. The fixed
charges and the parametersγi are chosen to best approximate
the electrostatic potential from the unperturbed DFT calcula-
tion.

Stretching and bending energies for PFF are retained from
the OPLS-AA force field,3 while the torsional energy is
reparametrized.1 Further details can be found in the respective
references. The electrostatic energy consists of a system of
fixed point charges and point polarizable dipoles described
by eq 3. The (1,2) and (1,3) interactions are omitted owing
to the breakdown of the bare Coulomb potential at such short
intersite distances. No intermolecular screening of the
Coulomb potential is included in the original model formula-
tion. Short-range repulsion and dispersion is represented by
a Lennard-Jones function

where we apply the geometric sum rule (σij ) (σiσj)1/2 and
εij ) (εiεj)1/2) for the interaction between particlei and j.
The functionfij is a scaling factor equal to zero for particles
connected by a valence bond or angle, set to 0.5 for
intramolecular 1,4 interactions and is 1.0 for all other pairs.
The Lennard-Jones parameters are derived from ab initio
dimer energies of organic compound analogues of the
residues and from the OPLS-AA force field.

We employ three commonly used water models to solvate
the polypeptide. A fixed charge TIP4P43 model (for the fixed
charge OPLS-AA protein3,44) and two polarizable water
models, TIP4P-FQ19 fluctuating charge model and an induc-
ible point dipole model, RPOL.8 All three models employ
an interacting Lennard-Jones site placed on the oxygen atom.

Eqi
) øiqi + 1

2
qi

2Ji
0 (2)

Vel ) Eelec+ Eµ + Eq - Egp (3)

Eelec) ∑
i
∑
j*i

[12qiJ(rij)qj + qiSij‚µj +
1

2
µi‚T ij‚µj]

Eµ ) ∑
i

Eµi

Eq ) ∑
i

Eqi (4)

∂Vel

∂qi
) 0 (5)

∇µi
Vel ) 0 (6)

∑
i)1

Nâ

qiâ ) 0 (7)

Uij ) ∑
i*j

4εij[(σij

rij
)12

- (σij

rij
)6]fij (8)
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Intermolecular interactions between electrostatic sites is
described by the bare Coulomb potential (see eq 4). The
TIP4P-FQ model includes an intramolecular interaction
between the charges within the molecule that is parametrized
along with the other electrostatic parameters empirically. The
RPOL model places point polarizable dipoles on the oxygen
and hydrogen atoms and omits intramolecular electrostatic
coupling.

In practice using this energy function for the simulation
of the TIP4P-FQ model with the polarizable protein results
in a polarization catastrophe where the electrostatic variables
between an interacting molecular pair mutually enhance to
infinite polarization. The polarization catastrophe arose from
interactions between TIP4P-FQ water and specific residues
on the protein (see Table 1). This problem is a direct
consequence of the point charge/dipole approximation to the
electron charge distribution. For point polarizable models
the pair interaction energy diverges at intersite distances
proportional to the molecules’ polarizability1/3. A similar
phenomena is found in fluctuating charge and combined
fluctuating charge/polarizable dipole models. A simple
illustration is a pair of isotropic interacting point inducible
dipoles where the singularity occurs at45

Models that incorporate a large molecular polarizability by
variable point charges/dipoles may have values forrcritical

that approach physically relevant interaction distances. When
this is the case, it is necessary to replace the Coulomb
potential with a more accurate representation of the true
potential at small interaction distances. A scaling factor may
be applied to the Coulomb function, or more rigorously a
screening function46,26may be used to effectively smear the
point multipole and more accurately represent the potential
of an electron charge distribution.

One should note the difficulty in accurately modeling
polarization with a simple potential function may lead to an
exaggerated polarizability and therefore a largercritical.42,40It
is interesting to point out that the polarizable RPOL water
model did not result in a polarization catastrophe when used
to solvate the polarizable protein. A more detailed study is
necessary to definitively resolve whether the catastrophe in
the TIP4P-FQ solvation model is a product of an unrealisti-
cally large polarizability of the water and protein or the use
of the Coulombic coupling between the electrostatic sites.
Providing evidence for the former explanation, a recent
study47 has shown a significant overpolarization response for
hydrogen bonding configurations in the neat fluid using the

TIP4P-FQ model, which may result from exaggerated
components of the molecular polarizability along the mo-
lecular plane. Settling potential problems with the TIP4P-
FQ water model is a prerequisite to dealing with the source
of the polarization catastrophe in our solvated protein
simulation. This work is ongoing in our lab. In lieu of a
satisfactory resolution on the TIP4P-FQ water model, we
adopt measures to dampen the polarization response between
specific residues and TIP4P-FQ water by applying a screen-
ing function for close range intermolecular interactions. The
cubic splinef(x) is chosen such thatf (0) ) 1, f′(0) ) 0,
f (1) ) 1 andf′(1) ) - 1, - 2, - 3, correspond to the value
of the functions 1/x, 1/x2, 1/x3, respectively, atx ) 1.26 A
“screening radius” is applied to specific dipole sites on the
protein which affects the charge-dipole interactions. A
summary of the sites and the respective screening radii is
given in Table 1. The Coulomb potentialu(r) ) 1/r2 is
replaced with

when r < s ands is the sum of the screening radii on the
pair of interacting sites.

B. Polarization and MD. 1. P3M Ewald with Dipoles.
The models studied in this report include point dipoles in
addition to point charges to describe the polarizable system;
therefore, in addition to interactions between charges the
electrostatic potential needs to describe the interactions
between charge-dipole and dipole-dipole sites.

The Ewald sum for evaluating the Coulombic energy for
a system of point charges has been extended to a system of
multipoles by Smith.7 The electrostatic energy for a periodic
system of point charges and point dipoles is

The Ewald sum with the metallic boundary condition follows
from ref 7

whereL is the unit cell dimensions and the Ewald splitting
parameterη modulates the relative weight ofEr andEk to
the total potential energy. For excludedi,j pairs we subtract
1/rij which is equivalent to replacing erfc(ηrij)/rij in Er with
-erf(ηrij)/rij. Mesh based approximations to the regular
Ewald sum discretize space on a regular grid reducing the
Fourier series transforms inEk to finite Fourier transforms
which can be evaluated by fast Fourier transform (FFT)

Table 1: Screening Radius Applied to Selected Dipole
Sites on the Polarizable Peptide Molecule in Solvated
TIP4P-FQ Simulations (Å)

residue (*) site of screened dipole screening radius

glutamic acid -C*O-O 2.5
aspartic acid -C*O-O 2.5
aspartic acid -CO*-O* 1.8
methionine -S-C*H3 2.0
tyrosine -C*OH- 2.5

rcritical ) (4RiRj)
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algorithms.48,49The Fourier space portion of the electrostatic
energy is evaluated using a suitable extension of the P3M
Ewald (P3ME) method,33,32 as discussed below. As is the
case for a system of point charges the real space part and
self-energy remain unchanged when using this generalized
P3ME method.

Recently Toukmaji et al.36 have extended the SPME
method to include dipole-charge and dipole-dipole interac-
tions. We adopt a similar extension to the P3ME method
for the applications presented in this study. Following a
similar formalism to that used in ref 36 we define a charge
dipole array and follow the same four step procedure for
generating the forces outlined in refs 32 and 33 for a fixed
charge system:

We assign this array to a grid using the same spline
function (P is the order of the spline) applied to the fixed
charge system

wherer p are the positions of the grid sites andM denotes
the spatial grid. In a similar spirit to the “analytic” scheme
for evaluating the spatial gradients in the field calculation
discussed in ref 32 the dipole gradients are evaluated by
analytic differentiation of the spline function,WP, which can
be factorized into a product of its Cartesian components.31

The spline functions up to orderP ) 7 are tabulated in ref
32. After assignment we apply a forward FFT to get the
Fourier space charge/dipole density

and the reciprocal space potential is

where the wave vectors are periodic with valuesk ) 2πm/L
andm is an integer vector with values between-Np/2 e m
< Np/2 and Np is the number of grid points along each
Cartesian axis. We use the optimized functionĜ correspond-
ing to that derived for a system of point charges:31,33

The functionkn ) k + 2πn/h. The parameterVc is the
volume of the grid cell andh is the cell width. The function
D̂(kn) is the Fourier transform of the differential operator
and is ik in this study. The functionR̂(kn) is the Fourier
transform of the true reference force

In principle an optimized function,Ĝ, can be found that
corresponds specifically to charge-charge, charge-dipole,
and dipole-dipole interactions. However this is not a
practical solution for an efficient algorithm, and the possible
gains in accuracy are negligible. This is discussed further in
Appendix I.

Using an inverse FFT we get the potential on the real space
grid.

The polarizable models studied require the potential, field,
and force to propagate the fluctuating charges, polarizable
dipoles, and nuclei, respectively (see eq 26). To evaluate
the forces and the field it is necessary to interpolate the
potential back to the particles. This is done in a similar way
to the analytic differentiation method of ref 32. The resultant
equations are

This method requires only 2 FFT’s in order to evaluate the
forces.

2. Extended Lagrangian Formalism for Polarization. Eqs
5 and 6 lead to a set of coupled linear equations in the total
electric field and the total potential at sitei which can be
solved iteratively until self-consistency is achieved. Upward
of six iterative calculations of the electric field and potential
may be necessary at each step in the molecular dynamics
simulation in order to conserve energy.36 Considering that
the field calculation is the most expensive portion of a
molecular dynamics simulation, the calculation of polariza-
tion in this manner leads to at least a 6-fold increase in the
computational complexity. For polarizable force fields an
alternative to iteratively solving for the electric degrees of
freedom at each time step in the simulation is an approximate
method similar in spirit to the Car-Parrinello ab initio MD
method.10,19,37,50This method treats the electric degrees of
freedom as dynamical variables by defining an extended
Lagrangian for the equations of motion

where V is the total potential energy,λâ is a Lagrange
multiplier necessary to satisfy charge neutrality on each
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molecule, andNâ is the number of charge sites on molecule
â. The charge/dipole dynamics are fictitious and serve solely
to keep these variables near the minimum energy, in a
computationally efficient manner. The corresponding Lagran-
gian equations of motion are19,10

whereφj andEj are the electrostatic potential and total field
on site j respectively and∑i is over all fluctuating charge
sites on the molecule containing sitej.

The extended Lagrangian approximation requires that the
fictitious dynamics run approximately adiabatically for the
duration of the simulation. This is satisfied with an ap-
propriately small choice ofmq/µ. If the frequencyωq andωµ

of the electric variables is sufficiently larger than the fastest
nuclear frequency, the degree of thermal coupling between
the fictitious and real dynamics will be small. The weaker
this coupling, the longer the simulation will progress with
the variable charges and dipoles remaining near the minimum
energy surface. However, values for the fictitious frequency
that are very large require a time step in the simulation that
is proportionally small resulting in a computationally costly
simulation. It is necessary to strike a balance in the selection
of the fictitious frequency parameters between the degree
of thermal coupling to the nuclear dynamic bath and the
computational cost of the simulation. A typical time step
for integrating a biomolecular system is on the order of a
femtosecond. Simulations that require a time step signifi-
cantly smaller than this will be prohibitively slow. The
frequency for the electrostatic variables is approximatelyωq

) (J0/mq)1/2 for the fluctuating charges andωµ ) 1/(Rmµ)1/2

for the polarizable dipoles with an isotropic polarizability.
We choose a charge and dipole mass (mq, mµ) such thatωq

andωµ ) 53, 333 cm-1. By applying a stability analysis to
the leapfrog algorithm, Hockney and Eastwood31 have
derived that the relationship between the time step used in
the finite difference integration algorithm and the largest
frequency in the system isωmax∆tmax) 2. The charge/dipole
frequency used in this study (ωmax ) 53, 333 cm-1) gives a
∆tmax ) 1.25 fs. However, the motion of the charge/dipole
variables are coupled by the electric potential/field leading
to frequency modes in the system larger than 53, 333 cm-1.
In practice we found a system dependent time step ranging
between 0.75 fs and 1 fs was necessary for stable integration
of the equations of motion. The extended Lagrangian
temperature remained below 0.5 K for all the polarizable
model simulations indicating these degrees of freedom
remain near the minimum energy surface. Thus on the time
scale of the extended Lagrangian simulations (approximately
300 ps between iterative minimization of the electrostatic
configuration) there is no appreciable transfer of energy to
the fictitious degrees of freedom. For very long simulations
(much greater than 300 ps), not tested in this study, it may
be necessary to systematically minimize the charge/dipole
configuration in order to ensure a more accurate representa-

tion of the model system. Considering the infrequency that
such a minimization would be needed, the added computa-
tional cost is essentially zero. Previous studies have found
it necessary to apply thermostats and in some cases a
restraining potential, to keep the charge/dipole variables near
the minimum energy surface.20,24,40It is not clear how such
an approach affects the dynamics of the system. A faithful
representation of the nuclear dynamics requires that the
energy flow to the fictitious degrees of freedom is negligible.
This condition can be transparently satisfied when using a
constant NVE simulation with the extended Lagrangian
protocol applied in this report, by monitoring the extended
Lagrangian temperature as a function of simulation time.

III. Application: Water Solvated BPTI
Bovine pancreatic trypsin inhibitor (BPTI) has been used as
a benchmark for force field simulations for some time,51,52

and for this reason is our choice of protein for this study.
We compare equilibrium simulations of BPTI using a newly
developed polarizable force field for polypeptides1 (PFF),
solvated in TIP4P-FQ and RPOL water, to a fixed charge
representation of BPTI using the OPLS-AA force field with
fixed charge TIP4P water. Regarding the accuracy of their
model, Kaminski et al.1 make note that their model is a first
generation attempt at developing a quantitatively accurate
force field for biomolecular simulation which includes
polarization. Further development and testing in the con-
densed phase are prerequisites to refining the model.
Incorporating an efficient methodology for large-scale po-
larizable condensed phase simulation, as is applied in this
study, is a step toward that goal. As such we are interested
in a stable efficient simulation for long time scales and a
reasonable representation of native state stability.

A. Simulation Procedure. The simulation procedure is
as follows. The starting structure, obtained from the 4PTI
structure in the Brookhaven Protein Data Bank,53 included
a protein monomer and 60 water molecules. Hydrogen atoms
were added using the MAESTRO software package.54 Six
counter chloride ions were added using GENION,55 to
neutralize the system. BPTI was then solvated in a 60 Å
cubic unit cell of water generated from a preequilibrated box
of neat TIP4P. Removing water molecules that overlap with
the protein left 6377 water molecules in the system. The
equilibration and production simulations were performed
using the program SIM developed in our lab.56 The initial
equilibration procedure used nonpolarizable force fields and
proceeded as follows. Using the OPLS-AA force field and
keeping the protein structure fixed, the water solvent was
equilibrated at constant temperature (298 K) and pressure
(1 atm) for 20 ps using Nose-Hoover chain thermostats57

and Andersen-Hoover type barostats,58 giving a cubic unit
cell of length L ) 58.8 Å. To generate the starting
configurations for the polarizable model production simula-
tions, an additional 10 ps of simulation at constant volume
and constant temperature (NVT) with a fixed protein
preceded an additional 50 ps of simulation in NVT allowing
the protein and water to relax. The production simulations
were run in the microcanonical ensemble using the velocity
Verlet algorithm for 2 ns with a 1 fstime step (0.75 fs for

mqq̈j ) -
1

Nâ
∑
i)1

Nâ

(φj - φi)

mµµ̈j ) -Rj
-1‚µj + Ej (26)
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PFF/TIP4P-FQ). A further 500 ps of equilibration was found
to be necessary leaving the final 1.5 ns for analysis. The
RATTLE59 constraint algorithm was used to keep the water
molecular geometry rigid, and the bonds between the protein
heavy atoms and hydrogens were held fixed. The Ewald
parameters for the simulations wereη ) 0.37 Å-1, a spherical
truncation of the real space potential atRcut ) 10 Å applied
to the electrostatic site positions, a grid spacing of 0.75 Å,
and an assignment orderP ) 6. The minimum energy
electrostatic configuration is solved iteratively at the outset
of the simulation. The extended Lagrangian method was used
to propagate these variables during the simulation. The
availability of computing time dictated the duration of each
simulation segment (65-600 ps). To generate the 2 ns
trajectories the simulation segments were run in sequential
order using the final nuclear configuration of the previous
segment as the initial configuration for the following
segment. For computational convenience the variable charges/
dipoles are iteratively minimized at the outset of each
segment. It should be noted that the minimizations are not
motivated by a drift of these variables from the minimum
energy surface. For example the increase in the extended
Lagrangian temperature is only≈0.01 K for the 315 ps
segment using PFF/TIP4P-FQ.

B. Results and Discussion.1. Efficiency.To analyze the
speedup from adopting the extended Lagrangian formalism
and the P3ME approximation we compare to a regular Ewald
calculation of the electrostatic energy with an iterative
solution to the electrostatic variables. For a consistent level
of accuracy with the P3ME simulation (relative rms Force
≈ 10-5) an efficient parameter set60 for the regular Ewald
sum corresponds toη ) 0.25 Å-1, a spherical truncation of
the real space potential atRcut ) 15 Å and of the wave vectors
kmax ) 14 Å. The P3ME method is approximately 8 times
faster than Ewald in evaluating the forces. An iterative
simulation requires greater than six iterations of the field
calculation per time step.36 In contrast, the overhead in using
the extended Lagrangian formalism is less than a factor of
1.1. A conservative estimate of the computational gain is
therefore on the order of 40 for an extended Lagrangian/
P3ME polarizable simulation compared to an iterative/Ewald
scheme even for this relatively small protein. For a similarly
sized system of neat RPOL water, Toukmaji et al.36 have
reported a speedup of 100 using an extended Lagrangian/
SPME simulation. The difference lies not in the relative
efficiency of SPME vs P3M Ewald, which is very similar,
but in the choice of suboptimal parameters for the regular
Ewald calculation used in the comparison between SPME
and Ewald. To compare the computational cost of a polariz-
able simulation to fixed charge models we present timing
data for the execution of one molecular dynamics time step.
Remarkably the fully polarizable model is only a factor of
1.23-1.45 more expensive than the fully fixed charge model
(the ratios are relative to the fixed charge simulation). The
bulk of the computational effort comes from the evaluation
of the electrostatic interactions. The TIP4P-FQ model
requires no new interactions and thus requires the smaller
computational effort (1.23). Using truncation methods and
the regular Ewald sum, models that incorporate inducible

dipoles have been shown to be a factor of 2 more expensive
than analogous fixed charge models.10,26 However in the
P3ME formalism there is no additional expense in the
evaluation of the FFT’s when using a model with shared
charge/dipole sites compared to charges alone. For this reason
the RPOL polarizable dipole solvation model gives the
improved scaling (1.45).

The molecular dynamics program used in this study is
benchmarked against a popular MD program in order to put
the preceding timing experiments into a familiar context. SIM
shows comparable computational speed relative to AMBER
7.4 Our SIM molecular dynamics program is approximately
1.3 times slower than AMBER 7 on a 2.4 Ghz Pentium IV
processor for a 23558 atom sized system of fixed charges.

2. Simulation Accuracy.Energy conservation in the NVE
ensemble is one measure of how faithfully our simulation
represents the model Hamiltonian given the P3ME and
extended Lagrangian approximations employed. The total
energy fluctuations,∆V, provide a measure of the energy
conservation and the total energy drift

whereVi is the total energy at stepi, V0 is the initial energy
under the extended Lagrangian dynamics, andNT is the total
number of time-steps. This quantity has been interpreted as
a reasonable measure of accuracy,61-63 and a value of∆V e
0.003, i.e., log(∆V) < - 2.5, gives an acceptable numerical
accuracy. Another parameter that measures the simulation
accuracy is the ratio of root-mean-square fluctuations
between the total energy (∆Vrms) and the kinetic energy
(∆KErms)

A value of R < 0.05 has been correlated with good energy
conservation.64 In Table 3 we present these parameters for
the various simulations. The largest values for log(∆V) and
R are -4.66 and 0.004, respectively, far less than the
acceptable minimum level of accuracy, indicating very good
energy conservation. One should note the excellent perfor-
mance of our simulations indicates a conservative array of
P3ME and integration parameters. A less strict tolerance may
be sufficient and result in a faster simulation.

The accuracy of the configurational trajectory for the
fluctuating charge and polarizable dipoles is related to the
extended Lagrangian temperature. If the electrostatic vari-
ables begin to drift from the potential energy minimum, the
corresponding extended Lagrangian temperature will begin
to increase. The extended Lagrangian temperature remains

Table 2: Time Averaged RMSD between the Average
NMR Structure and the Average Simulation Structurea (Å)

model CR heavy atoms

OPLS-AA/TIP4P 0.7 1.17
PFF/TIP4P-FQ 0.85 1.47
PFF/RPOL 0.91 1.39

a Terminal residues are excluded from the comparison.

∆V )
1

NT
∑
i)1

NT |V0 - Vi

V0
| (27)

R )
∆Vrms

∆KErms
(28)
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near the value at the beginning of the polarizable simulations
never rising above 0.5 K (see Table 3), which indicates these
variables remain near the potential energy minimum for the
duration of the simulation (for the TIP4P-FQ model a
temperature< 6 K has been correlated with a good
representation of the minimum energy electrostatic config-
uration19). Figure 1 shows the extended Lagrangian temper-
ature for the longest simulation segment between iterative
minimizations (315 ps) using the TIP4P-FQ model. Table 3
also shows the root-mean-square deviations of the electro-
static variables from the minimum energy configuration for
the last nuclear configuration corresponding to the largest
simulation segment between minimizations (400 ps for
RPOL). The deviations are small providing further evidence
the generated trajectories are representative of the minimum
energy surface.

3. Force Field Accuracy.How well simulations represent
the native structure of the protein provides a coarse measure-

ment of the quality of the polarizable force field models.
Assuming the model simulation begins in the real native
state, a poor representation will lead to large deviations as
it relaxes to the erroneous native state of the model.
Measuring small deviations from experiment over long
simulation periods (nanoseconds) is a positive indication for
the model. In this study the experimental crystal structure is
used to represent the native state. NMR experiments of BPTI
in liquid water65 have shown small root-mean-square devia-
tions (RMSD) between the average NMR structure and the
crystal structure (RMSD)0.85 Å) indicating the native
protein structure does not change significantly between the
liquid and crystal. We present the RMS deviations of the
simulated peptide backbones relative to the experimental
crystal structure for 2 ns simulations in Figure 2. The terminal
residues show large fluctuations in the liquid water simula-
tions and are not included in the RMSD analysis in line with
the results from the NMR experiments.65 The polarizable
force field simulations are similar to the fixed charge model
with the average RMS deviation being≈0.8 Å for all the
models. For a direct comparison to an experimental solvated
structure, time averaged RMSD values between simulation
and the average NMR structure are evaluated and sum-
marized in Table 2. The differences between the polarizable
and nonpolarizable models remain small and within the
experimental error.

We also investigate the RMS deviations of the heavy
atoms of the protein (see Figure 3). The results show close
similarity between the polarizable and nonpolarizable model
simulations. It is interesting to note that equilibrium of the
protein including the side chains requires an additional 500
ps of simulation as evidenced by the slope at the start of the

Figure 1. Trajectory of the total energy and extended Lagrangian temperature for PFF/TIP4P-FQ simulation. The 315 ps duration
is the longest simulation segment used between minimizations for this model combination. The temperature stays approximately
constant for the duration indicating little thermal coupling with the nuclei on this time scale. The total energy for the same trajectory
is also plotted showing fluctuations about a consistent value for the simulation length.

Table 3: Summary of the Simulation Accuracy

model log(∆V)a Rb

extended
Lagrangian

T (K)c
qrmsd

(e)
µrmsd

(Debye)

OPLS-AA/TIP4P -5.21 0.004 N/A N/A N/A
PFF/TIP4P-FQ -4.96 0.003 0.5 0.002 0.012
PFF/RPOL -5.30 0.004 0.1 N/A 0.003

a log(∆V) measures fluctuations about a reference energy near the
beginning of the simulation. b R measures the ratio of root-mean-
square fluctuations between the total and kinetic energy. Accurate
fixed charge simulations have been correlated with a value of log(∆V)
< -2.5 and a value of R < 0.05. c The extended Lagrangian
temperature measures the degree of thermal coupling between the
electrostatic variables and the nuclear variables. Typically tempera-
tures less than 6 K have been correlated with a good representation
of the potential ground state.
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simulations in Figure 3. Figure 4 shows the time averaged
RMS deviation corresponding to each residue in the protein
from simulation and NMR experiment relative to their
average structures. The results are again similar for all three
simulations.

Considering the small structural deviations between simu-
lation and the protein crystal structure are similar to that from
the nonpolarizable force field one can only conclude that
like the fixed charge models the polarizable simulations are
a reasonable representation of this water/BPTI system. The
results are similar for averaged RMSD values between
simulation and the average NMR structure (see Table 2). A

more sensitive experimental probe is necessary to resolve
the relative accuracy of the nonpolarizable OPLS-AA
simulation and the proposed polarizable solvation models
studied in this report.

IV. Conclusions
We have presented a computationally efficient and accurate
methodology for the simulation of large polarizable systems
using a combination of fluctuating charges and polarizable
dipoles. The method requires only a modest overhead relative
to nonpolarizable force fields and the simulations run stably
for 2 ns. The method does not need thermostats or the

Figure 2. Root-mean-square deviation of CR atoms for the simulation structures from the experimental crystal structure as a
function of simulation time. Terminal residues, which show large fluctuations from NMR experiments as well as simulation, are
not included in this analysis. All models do a reasonable job representing the protein native state for the 2 ns duration of the
simulation.

Figure 3. Root-mean-square deviation, including all heavy atoms, for the simulation structures from the experimental crystal
structure as a function of simulation time.
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imposition of restraint potentials, which may obscure the
dynamics of the system, to keep the electrostatic degrees of
freedom near the minimum energy surface. Thus, the method
allows a reliable representation of the system dynamics at
constant energy and constant volume. Our tests of a newly
developed polarizable protein force field combined with the
TIP4P-FQ and RPOL models for water gave promising levels
of accuracy compared to the experimental structures. How-
ever, a more detailed study is necessary to resolve the relative
accuracy of this protein polarizable model to that of fixed
charge polypeptide models. Experiments that probe the
hydrogen bonding environment of these solvated peptides,
such as time-resolved infrared spectroscopy, are a promising
tool for evaluating the quality of biomolecular force fields.47

Although the structural quantities investigated in this report
show little to differentiate the polarizable and nonplarizable
simulations, one should not conclude that the simulations
are similar. Significant differences between the nonpolariz-
able and polarizable simulations are found in the hydrogen
bonding patterns of the protein structure and in the structural
and dynamic properties of the solvent surrounding the
protein. This will be presented in a following publication.66

One should also keep in mind that the polarizable peptide
model is in the first stage of development. Further refinement
of the model, by including condensed phase data into the
parametrization, is now possible and will certainly lead to
more accurate polarizable models.

Acknowledgment. The authors thank Dr. Tom Young
and Dr. Shenglong Wang for helpful discussions. This work
was supported by a grant to B.J. Berne from NSF (CHE-
03-16896), to Richard A. Friesner from NIH (GM52018)
and by a grant of computer time from the EMSL at Pacific
Northwest National Laboratories.

V. Appendix: Optimized Coulomb
Propagator for a System of Point Charges
and Point Dipoles
Following the procedure of Hockney and Eastwood31 one
can derive optimized Coulomb propagators on a discretized
space for charge-dipole and dipole-dipole interactions.
Defining the mean square difference between the force
calculated on the grid,F, and the true reference force for
the continuous space problem,R, to be

The Fourier space representations of the reference forces for
the interacting charge/dipole sites are

whereqqdenotes the force between two charges,qpdenotes
the force on chargeq from dipolep, pq denotes the force on
p from q, and pp denotes the force between two dipoles.
The calculated force from the discretized space is

Figure 4. Time averaged RMSD over main chain atoms of individual residues from the respective average simulation and
NMR structure. The â-strands are marked in green, and the R-helices are marked in dark gray. The residue dependence of the
protein fluctuations in the liquid show correspondence between the simulation models and the NMR experiment.

Q ) 1
Vh
∫Vh

d3r1∫V
d3r |F(r ;r1) - R(r )|2 (29)

R̂qq ) qiqjik
4π
k2

e-k2/4η2

R̂qp ) qi(ik‚µj)ik
4π
k2

e-k2/4η2

R̂pq ) -(ik‚µi)qjik
4π
k2

e-k2/4η2

R̂pp ) -(ik‚µi)(ik‚µj)ik
4π
k2

e-k2/4η2
(30)

F̂qq ) qiqjÛD̂Ĝ∑
n

Ûei(k-kn)‚r1

F̂qp ) qiÛD̂Ĝ∑
n

Û(ikn‚µj)e
i(k-kn)‚r1
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whereÛ ) Ŵ/Vh andD̂ depends on the method of potential
differentiation for the field gradient. The wave vectork )
2πm/L and kn ) k + 2πn/h. Minimizing the functional
derivative ofQ̂ with respect toĜ we can get the optimized
functional parameterĜ corresponding to this set of interac-
tions. However sinceik is not periodic in the alias sum over
n, the Fourier transform of the dipole gradient remains within
the alias sum (see page 274 of ref 31 for details of the
derivation), and the parametersĜpq, Ĝqp, and Ĝpp remain
explicit functions of the particular dipole site,µ. Obviously
this is not a tenable solution. A finite difference approxima-
tion for differentiating the dipole gradients is periodic, and
the result reduces to eq 19 for all interacting pairs. Of course
as was shown in ref 33 the difference inĜ between keeping
ik within the alias sum and factoring it out all but disappears
for the assignment orders and grid densities used in this
study, which means to an excellent approximation,Ĝqq )
Ĝpq ) Ĝqp ) Ĝpp.
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